POLLINATION EVENTS IN NIGELLA SATIVA L. (BLACK CUMIN)
Suchetana Mukherjee1, Aninda Mandal1, Sudha Gupta1 and Animesh K. Datta1*
1Department of Botany, Cytogenetics, Genetics and Plant Breeding Section, University of Kalyani, Kalyani 741235, West Bengal, India
2Department of Botany, Pteridology-Palaeobotany Section, University of Kalyani, Kalyani 741235, West Bengal, India

Received on: 08/01/13 Revised on: 22/02/13 Accepted on: 10/03/13

*Corresponding author
E-mail: dattaanimesh@gmail.com
DOI: 10.7897/2277-4343.04307
Published by Moksha Publishing House. Website www.mokshaph.com
All rights reserved.

ABSTRACT
The pollination events in Nigella sativa Family: Ranunculaceae; common name: black cumin; significant plant species for therapeutic uses and possessing spice yielding property) has been studied in relation to floral morphology, consequences of pollination types on reproductive parameters, types of visitors (Apis dorsata Fabr. – honeybees; Coccinella transversalis Fabr. - lady bug, Danaux plexippus L. - butterfly and Colletes succinctus L. - wasp) and flower color changes from bud to blooming stage. Honeybees are the predominant pollinators. Pollination is of ‘generalized type’. The study has provided insight on the effective mode of pollination in the species maximizing seed yield.

Keywords: N. sativa; insect visitors; pollination

INTRODUCTION
Nigella sativa L. (Family: Ranunculaceae; common name: black cumin) is an annual herb with immense therapeutic uses not withstanding its significance as a spice yielding plant of commerce1. Black cumin seeds are most revered in Middle East as it can heal every disease except death2. Being a significant plant species undergoing sexual reproduction, pollination events are important for effective fertilization to develop fruits and seeds. The present study describes floral morphology of the species, different modes of pollination and its consequences on reproductive parameters, insect visitors during flowering phase and changes in flower color from bud to blooming stage with an objective to identify the best mechanism for pollination and subsequently enhancing seed yield.

MATERIAL AND METHODS
Selfed lines of Nigella sativa L. (Ranunculaceae) has been maintained in the experimental field plots of University of Kalyani (West Bengal plains, Nadia, latitude 22°50’ to 24°11’ N, longitude 88°09’ to 88°48’ E; soil- 9.9% sand, 2.9% silt and 87.2% clay; organic carbon- 3.25%, soil pH 6.87) for last 10 years. Herbarium specimen (voucher no. NS-1/2004) has been deposited in the museum of Department of Botany, University of Kalyani. The plants are grown at 25×15 cm row to plant distance. The flowering phase in the plant species is from mid January to late February. Floral morphology, reproductive parameters namely capsule length, seeds/capsule, seed size and 100-seed weight was studied in relation to 3 pollination events (Table 1). The insects were found to visit plantation throughout the day during the flowering phase and they were collected using butterfly net. The collected insects were identified from Entomology section, Department of Zoology, University of Kalyani.
Spectral analysis of pale green petalloid sepals (bud condition) and pigeon blue petalloid sepals (blooming stage) was performed as per Tatsuzawa et al.3. Thin layer chromatography (TLC) was also performed with both types of petalloid sepal extracts.

Table 1: Reproductive characters at different pollination modes

<table>
<thead>
<tr>
<th>Pollination types</th>
<th>Flower size</th>
<th>Capsule length</th>
<th>Seeds/capsule</th>
<th>Seed sizes</th>
<th>100-seed weight (gm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Length (cm)</td>
<td>Breadth (cm)</td>
<td></td>
<td>Length (mm)</td>
<td>Breadth (mm)</td>
</tr>
<tr>
<td>Controlled pollination</td>
<td>3.04±0.03</td>
<td>3.02±0.02</td>
<td>0.81±0.06</td>
<td>41.20±4.02</td>
<td>2.00±0.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.09±0.03</td>
<td>0.18±0.003</td>
</tr>
<tr>
<td>Open pollination</td>
<td>3.05±0.01</td>
<td>3.02±0.03</td>
<td>1.13±0.08</td>
<td>77.40±3.49</td>
<td>2.55±0.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.42±0.02</td>
<td>0.21±0.003</td>
</tr>
<tr>
<td>Removal of petalloid sepals and open pollination</td>
<td>3.03±0.03</td>
<td>3.02±0.03</td>
<td>0.57±0.03</td>
<td>24.40±1.41</td>
<td>1.56±0.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.01±0.04</td>
<td>0.13±0.004</td>
</tr>
<tr>
<td>χ² value</td>
<td>0.00065</td>
<td>0.00</td>
<td>1.88</td>
<td>307.85</td>
<td>2.41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.81</td>
<td>0.19</td>
</tr>
<tr>
<td>P value of χ² test of heterogeneity at 2 DF</td>
<td>>0.99</td>
<td>1.00</td>
<td>0.30-0.50</td>
<td><0.001</td>
<td>0.20-0.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.50-0.60</td>
<td>>0.90</td>
</tr>
</tbody>
</table>
RESULTS AND DISCUSSION

For obtaining precise knowledge about the pollination events it is a prerequisite to attain information about floral morphology. Flower hermaphrodite, solitary on the main axis; size 3.04 cm ± 0.03 × 3.02 cm ± 0.03; color pigeon blue (RAL 5014); flower without any involucres of bracts, pedunculate, peduncle long, erect; petalloid sepals broad, ovate in a single whorl, 4 to 6, mostly 5 and characterized by the presence of nectaries; flower fertility on an average 89.89%; stamens in 3 to 4 whorls, numerous (32 to 66; mean 49.6±2.7) and shed their pollen grains (anthesis: 7 am to 10 am) as the filament bent outward during male phase and pollination is effected on synchronization of both male and female phases; gynoecium 5, completely united follicles, each with a long indehiscent style and composed of variable number of multi ovule carpel, developing into a follicle after pollination; fruit capsular. Abu-Hammour\(^3\) reported that anther receptivity occurred between 8.00 am to 1.00 pm for one day only and synchronization of male and female stages occur on the last day of flowering. Postweiler et al.\(^4\) suggested that high temperature effect fertilization success by affecting stigma receptivity and accelerating ovule degeneration.

In the present investigation 3 different types of pollination have been conducted to assess significant variations, if any, among the reproductive parameters (Table 1). Apart from seeds per capsule, none of the studied traits are affected due to different modes of pollination. Flower size seems to possess non-significant outcome on the seed production. Maximum yield of seeds per capsule has been observed on open pollination (selfed/crossed) and it decreased markedly on the removal of petalloid sepals prior to pollination. Controlled pollination (selfing
The visit following bagging) provided moderate seed yield per capsule. Due to bagging in control pollination and due to removal of petalloid sepals containing nectaries, the visitors may have been restricted. Maximization of seeds/capsule through open pollination possibly suggested the role of the visitors in pollination.

The visitors (Figure 1:C-D, F) noted during flowering phase of the species are namely, *Apis dorsata* Fabr. (Family: Apidae; honeybee – Figure 1:C), *Coccinella transversalis* Fabr. (Family: Coccinellidae; lady bug – Figure 1:F), *Danaux plexippus* L. (Family: Nymphalidae; butterfly) and *Colletes succinctus* L. (Family: Colletidae; wasp – Figure 1:D). The insects are found to visit plantation throughout the day (7.00h to 17.30h) during the flowering phase. The guts of honeybees, wasps, lady bugs and butterflies (as well as wing) have been dissected out, washed in sterile water, centrifuged (5000 rpm for 5 minutes, in each case), residue suspended in glycerol and observed under light microscope. Microscopic observations of each sample revealed pollen grains of *N. sativa* along with pollen grains from other sources. This indicates possible mutualistic interaction between the species (undergoing pollination) and insect visitors (nectar present in petalloid sepals). Pollinators are the key component to healthy ecosystems. Pollinators associated to black cumin pollination are found to carry pollen grains from other sources as well, which may be used for ecological benefit. As multiple pollinators are observed in a species, the type may be referred to ‘generalized pollination’. Honeybees are found to be the predominant visitor. Lady bug has been found to lay eggs and produce larva (Figure 1:E) on the peduncle of the flower. Asian honeybees are reported to visit mostly pale colored flowers in deforested areas and crops as well as tropical and subtropical herbs, grasses and plantation trees.

Significant in the species is that the flower color (color of the petalloid sepals) changes from pale green (RAL 6021) to pigeon blue (RAL 5014) at full bloom (Figure 1:A-B). Possibly color changes attracts the visitors for pollination events. Removal of all the anthers followed by bagging of floral buds also showed similar change of color in flowers which indicated that color change is associated with maturity of plants. Spectral analysis where sample A (extract of pale green petalloid sepals) showed carotenoid (460 nm absorbance) and chlorophyll (650 nm absorbance) peaks with acetone methanol (1:1) extraction as compared to prominent anthocyanin (530 nm) peak in B (extract of pigeon blue petalloid sepals) sample (Figure 2:A-B) following extraction in acidic methanol (0.1% HCl). Therefore, there exist distinct variations in pigmentation in the samples. TLC (Thin layer chromatography) profile of A and B samples (extraction: acetone 22 ml : petrol ether 3 ml : spatula tip-full of CaCO₃; mobile phase – petroleum ether 100 ml : isopropanol 11 ml : distilled water 5 drops) also showed variation in spots (6 spots in A sample and 3 spots in B sample; Rₓ 0.131 to 0.693; only 1 spot with 0.389 is common). The spots are pink under ultraviolet B (Figure 3:A-B). Further analysis is required to identify the anthocyanin produced in blooming flowers.

CONCLUSION

Pollination in *N. sativa* is found to be influenced by insect visitors and it is of ‘generalized pollination’ type. Honeybees are the predominant pollinators and maximization of seed yield occurs with open pollination event.

ACKNOWLEDGEMENTS

The Research is grant aided by DST-PURSE, University of Kalyani.

REFERENCES

Cite this article as:

Source of support: DST-PURSE, Conflict of interest: None Declared