INTRODUCTION

Herbal medications have been guided the mankind to relieve the symptoms of disease and to become healthy spiritually, physically and mentally throughout life, since very old times. Although remarkable advances are observed in modern medicine in recent centuries, medicinal plants and herbal drugs still make an important contribution to health care. Herbal drugs constitute only those traditional medicines, which primarily use medicinal plants preparation for therapy. The earliest recorded evidence of their use in in Indian, Chinese, Egyptian, Greek, Roman and Syrian text dates back to about 5000 years. The herbal medicine has traditions of ancient civilization and scientific heritage. Though India has a rich tradition in the use of medicinal plants, the effort to develop drugs from plants has had limited success. Hence, plants have returned to the forefront in drug development as medicines, as source of active molecules and as lead to the discovery of new drugs. The use of medicinal plants to treat various diseases in India dates back to the times of Rig-Veda (3500-1800BC). Later, the monumental Ayurveda works like Charaka Samhita and Susruta Samhita followed by other Ayurveda drugs entering into to several medicinal preparations were in the management of health care. In fact these systems have been in practice even in remote areas of our country for centuries. World Health Organization (WHO) estimates that 80% of the people living in developing countries almost exclusively using traditional medicine and about 119 secondary metabolites of plants are used globally as drugs. Since ancient times it is generally accepted that herbal drugs are more effective, safe and have less side effects which make it more popular. The value of medicinal plants and herbal medicines in prophylactic use and treatment of disease can be enhanced and improved by analysis and quality control which should also include clinical research.

Baleria prionitis of Acanthaceae family is found throughout the northern and western parts of India and also grows as hedge plant in garden. Almost all the parts of this plant have medicinal importance and used traditionally for the treatment of various ailments like asthma, cough, oedema, gout and tooth ache. In the present investigation, the detailed macroscopic, histological, microscopic studies and physicochemical evaluation of roots of Baleria prionitis is carried out. Histological study revealed the presence of tubular collenchyma, phloem ray, calcium oxalate crystals, wood cells and endodermis. Microscopic study of the root powder showed starch grains, tannins, calcium oxalate crystals and fatty substances. Physicochemical characteristics such as foreign matter, loss on drying, ash value, alcohol soluble extractive value and water soluble extractive value were determined. The results of the present study help in sample identification, standardization of quality and purity of the plant which help in preventing adulteration.

Keywords: Pharmacognosy, Phytochemicals, Baleria prionitis

Research Article
www.ijrap.net

PHARMACOGNOSTIC STUDIES AND PHYSICOCHEMICAL INVESTIGATION OF BALERIA PRIONITIS LEAVES

Lincy Joseph 1, Mathew George 2, Gaurav Nama 3, Jeenu Joseph 3

1Professor, HOD, Department of Pharmaceutical Chemistry, Pushpagiri College of Pharmacy, Thiruvalla, Kerala, India
2Principal, Professor, HOD, Department of Pharmacology, Pushpagiri College of Pharmacy, Thiruvalla, Kerala, India
3Assistant Professor, Department of Pharmacognosy, Pushpagiri College of Pharmacy, Thiruvalla, Kerala, India

Received on: 16/08/16 Revised on: 26/09/16 Accepted on: 30/09/16

*Corresponding author
E-mail: mathewlincy@yahoo.com

DOI: 10.7897/2277-4343.075225

ABSTRACT

Baleria prionitis of Acanthaceae family is found throughout the northern and western parts of India and also grows as hedge plant in garden. Almost all the parts of this plant have medicinal importance and used traditionally for the treatment of various ailments like asthma, cough, oedema, gout and tooth ache. In the present investigation, the detailed macroscopic, histological, microscopic studies and physicochemical evaluation of roots of Baleria prionitis is carried out. Histological study revealed the presence of tubular collenchyma, phloem ray, calcium oxalate crystals, wood cells and endodermis. Microscopic study of the root powder showed starch grains, tannins, calcium oxalate crystals and fatty substances. Physicochemical characteristics such as foreign matter, loss on drying, ash value, alcohol soluble extractive value and water soluble extractive value were determined. The results of the present study help in sample identification, standardization of quality and purity of the plant which help in preventing adulteration.

Keywords: Pharmacognosy, Phytochemicals, Baleria prionitis

INTRODUCTION

Baleria prionitis of Acanthaceae family is found throughout the northern and western parts of India and also grows as hedge plant in garden. It is distributed throughout India and Ceylon. Almost all the parts of have medicinal importance and used traditionally for the treatment of various ailments. Root extract of Baleria prionitis is applied locally on skin to expel spine from the skin. The oil prepared with whole plant is indicated for external application during acute stages of cyst in blood vessels. Root paste of plant is applied over boils and glandular swellings. Roots and flowering tops of Baleria prionitis are rich in potassium salts and diuretic. Leaves and stem of Baleria prionitis showed the presence of iroides, glucosides, barlerin, acetyl barlerin. Ash mixed with honey is given in bronchial asthma. Roots are used in cough, asthma, as tonic, diuretic and antimicrobial. The Ayurvedic pharmacopoeia of India recommends oil extracts of Baleria prionitis for arresting graying hair. Whole plant paste is applied externally as an ointment for gut. Leaves are chewed and sap is swallowed for curing mouth ulcers. Leaf paste is applied externally for tooth ache.

Aim

The aim of the present study is the detailed pharmacognostic studies like macroscopic, histological and microscopic studies and physicochemical evaluation of Baleria prionitis roots of Acanthaceae family.

Collection and authentication

Roots of Baleria prionitis of Acanthaceae family were collected in September from Nahargarh, Jaipur. Authentication of plant (Authentication Number RUBL-20650) was done by Mr. Vinod Sharma, Herbarium In charge, Department of Botany, Rajasthan University, Jaipur, India.
Drying of plant material
Roots were separated from *Baleria princeps* plant and washed with water, dried under the shade at room temperature for 15 days. Pulverized to a coarse powder and passed through a 60# sieve for uniform particle size.

MATERIALS AND METHODS

Macroscopic study
Macroscopic study includes morphological details of the plant which can be done with naked eye or magnifying microscope. This helps us to make a description of the plant.

Histological study
Root of diameter 3 to 5 mm and length of approximately 2.5 cm was selected and boiled the sample for few minutes to soften the hard drug sample. It was then used for taking fine microscopic sections. The section was stained with hydrochloric acid and phloroglucinol. The best section was mounted in glycerin medium for observation. Image was taken with a digital camera incorporated in a microscope.

Microscopic study
The microscopic examination gave several diagnostic characters. This study was conducted to locate the site of secondary metabolites in the root powder. The root powder was cleared by boiling with KOH (5%), stained with reagents like Iodine Solution, FeCl₃ Solution, Sudan red and Lectochloral and mounted in the microscope for further studies.

Physicochemical study
In the present study, root powder was investigated for the physicochemical characterization to evaluate the quality and purity of the extracted drug. The physicochemical parameters like foreign matter, loss on drying, ash values, extractive values were determined as per WHO guidelines.

RESULTS

Macroscopic study
Shape- cylindrical or slightly curved
Surface characteristics-Surface was fissured contain longitudinal corrugations
Fracture-fibrous
Colour-Brownish grey to yellowish brown
Odour- Characteristic and persistent
Taste-pungent

Histological study
Periderm stem bark is subtended by 5-7 layers of tubular collenchymas.
Phloem ray of stem is heterogenous with uniseriate and multiseriate rays, 8-16 and 8-25 cells high respectively and 23 celled broad.
Granular and needle shaped calcium oxalate crystals filling up many cells in almost all tissue barks.
Cork is yellowish and sometime contain new phellogen layer separating the outer and inner cortex.
Wood cells with blackish brown content
Endodermis is uniseriate and surrounding the xylem and phloem ray. (Figure 1)

Microscopic study
The root powder was bright yellow in colour with characteristic odour. Starch grains, tannins, calcium oxalate crystals and fatty substances were observed in the root powder using reagents like Iodine Solution, FeCl₃ Solution, Sudan red and Lectochloral. (Table 1 and Figure 2, 3, 4 and 5)

Physicochemical Study
In the present study, the physicochemical parameters like foreign matter, loss on drying, ash values, extractive values were determined and results are given in Table 2.

<table>
<thead>
<tr>
<th>Sl.No</th>
<th>Physical constants</th>
<th>Results (%w/w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Foreign matter</td>
<td>1.3</td>
</tr>
<tr>
<td>2.</td>
<td>Loss on drying</td>
<td>7.3</td>
</tr>
<tr>
<td>3.</td>
<td>Total ash value</td>
<td>8.07</td>
</tr>
<tr>
<td>4.</td>
<td>Acid insoluble ash value</td>
<td>1.75</td>
</tr>
<tr>
<td>5.</td>
<td>Water soluble ash value</td>
<td>4.30</td>
</tr>
<tr>
<td>6.</td>
<td>Alcohol soluble extractive value</td>
<td>4.07</td>
</tr>
<tr>
<td>7.</td>
<td>Water soluble extractive value</td>
<td>13.07</td>
</tr>
<tr>
<td>8.</td>
<td>Sulphated ash</td>
<td>2.03</td>
</tr>
</tbody>
</table>
Figure 1: Histological study of *Baleriapronitis* roots

Figure 2: Starch grains in root powder

Figure 3: Tannins in root powder

Figure 4: Fatty substance in pink

Figure 5: Calcium oxalate crystals in root powder orange colour in root powder
DISCUSSION

In this study morphological, histological, microscopical and physicochemical standards have been developed. Histological study showed periderm stem bark subtended by tubular collarenchyma, phloem ray, granular and needle shaped calcium oxalate crystals, wood cells with blackish brown content and endodermis. Microscopic evaluation is one of the simplest and cheapest methods for the correct identification of the source of the materials.22 Physicochemical evaluation of Baleria prionitis root powder has shown that the results are within limit (Table 2). This result indicates that the quality and purity of raw material was good enough. The physicochemical parameter like total ash is important as it shows the purity of drug, which implies presence or absence of foreign material like metallic salts and silica or earthy matter.23 The extractive values are primarily useful for the determination of exhausted or adulterated drug and helpful in the detection of adulteration. The water soluble extractive value shows the presence of inorganic compounds and acids. Alcohol soluble extractive values represent the presence of polar constituents like alkaloids, steroids, glycosides, phenols, flavonoids.24 The extractive values give an idea about the chemical constitution of the drug and from the study, the extractive value of water was highest followed by alcohol.

CONCLUSION

The results of the present study can serve as a valuable source of information and provide suitable standards for identification of Baleria prionitis roots of Acanthaceae family in future investigations and applications.

REFERENCES


Cite this article as:


Source of support: Nil, Conflict of interest: None Declared

Disclaimer: IJRAP is solely owned by Molsha Publishing House - A non-profit publishing house, dedicated to publish quality research, while every effort has been taken to verify the accuracy of the content published in our journal. IJRAP cannot accept any responsibility or liability for the site content and articles published. The views expressed in articles by our contributing authors are not necessarily those of IJRAP editor or editorial board members.