ANTIPYRETIC POTENTIAL OF DIFFERENT EXTRACTS OF CASSIA FISTULA LINN (FABACEAE) BARK

Jana Goutam Kumar¹, Patel Naresh*¹, Sahoo Prasenjit¹, Gupta Anshita¹, Gunjan Manish²
¹Department of Pharmacognosy, Gayatri College of Pharmacy, Jamadarpali, Sason, Sambalpur, Odisha, 768200, India
²School of Pharmacy, MUCH, IPOH, Malaysia

Received: 29-10-2010; Revised: 23-11-2010; Accepted: 03-12-2010

ABSTRACT
Ethnobotany is a multidisciplinary science defined as the interaction between plants and people. On the basis of ethnomedicinal use, antipyretic activity of petroleum ether, ethyl acetate, chloroform, methanol extract of Cassia fistula Linn (Fabaceae) bark has been investigated in albino rats. Normal body temperature is regulated by a centre in the hypothalamus that ensures a balance between heat loss and production. Fever occurs when there is a disturbance of this hypothalamic ‘thermostat’, which leads to the set-point of body temperature being raised. Once there has been a return to the normal set-point, temperature regulating mechanism (dilatation of superficial blood vessels, sweating etc.) operates to reduce temperature. The study was carried out by using dose of 300 mg/kg orally. Experimental results exhibited that petroleum ether, ethyl acetate, chloroform, methanol extract of Cassia fistula bark, possess a significant antipyretic effect. After inducing 15% w/v suspension of yeast (1ml /100gm Body weight), temperature of experimental animal was increased. Then different extracts of the drug was induced into albino rats, which shows significant results. It was observed that methanol extract at a dose of 300 mg / kg body weight showed maximum antipyretic activity amongst other extracts which is statistically significant as the value of $p<0.05$.

KEY WORDS: Cassia fistula, Antipyretic, Albino Rat, Yeast, Diclofenac sodium, Paracetamol

*Corresponding Author
Naresh Patel
Department of Pharmacognosy,
Gayatri College of Pharmacy,
Jamadarpali, Sason, Sambalpur,
Odisha, 768200, India
INTRODUCTION
Nature always as a golden mark to exemplify the outstanding phenomenon of symbiosis. The plants are indispensable to man for his life. Plants from nature are being used in medicine from time immemorial because they have fitted the immediate personal needs and nature remains as the potential source of organic structures of unparalleled diversity. The selected plant Cassia fistula was reported to have wide ethnomedicinal use. On the basis of the report of literature review the plant Cassia fistula was selected for antipyretic activity. It is a deciduous, medium-sized tree with a gray, smooth, exfoliating bark. 4-8 pairs of leaflets distinctly stalked, oblong or ovate, with a silvery pubescence; the flowers are bright yellow, in axillary, pendulous, lax racemes; the pods are cylindrical, smooth, hard, dark brown or black; the seeds light brown. Pyrexia comes from the Latin word “febris” meaning fever. It is a frequent medical symptom that describes an increase in internal body temperature to levels that are above normal.

MATERIAL AND METHODS
Plant Material
The bark of Cassia fistula was collected from Ushakothi and Kuagola, Jamankira, are the places in the Sambalpur district of Orissa in May. It was identified and authenticated at Central National Herbarium, Botanical Garden, Howrah.

Preparation of Extracts
The barks were dried in shade and powdered to get a coarse powder. About 1kg of dry coarse powder was extracted with methanol (40-60°C) by continuous hot percolation using soxhlet apparatus. The extraction was continued for 72 hours. Then petroleum ether, ethyl acetate, chloroform, methanol extract were prepared by following fractionation process for experiment.

Animals
Healthy adult Wister strain albino rats of both sex between 2-3 months of age and weighing 150-200 gm were used for this study. Animals were allowed to be acclimatized for a period of 2 weeks in our laboratory environment prior to the study. Rats were housed in polypropylene cages (3 animals per cage), maintained under standard laboratory conditions (i.e. 12:12 h light and dark sequence; at an ambient temperature of 25 ± 2°C; 35-60% humidity); the animals were fed with standard rat pellet diet (Hindustan Liver Ltd. Mumbai, India) and water ad libitum. The principles of Laboratory Animals care were followed and instructions given by our institutional animal ethical committee were followed throughout the experiment.

Antipyretic activity
Induction of yeast induced pyrexia & Drug administration
Rats were divided into 6 groups of 6 rats each. Fever was induced in rats by subcutaneous injection of 10 ml/kg body wt of 15% w/v yeast suspended in 0.5% w/v methyl cellulose solution. After 19 hrs of yeast injection, the elevated body temperature ensures induction of pyrexia, then pet-ether, ethylacetate, chloroform, and methanol extracts of bark at the dose of 300 mg/kg orally administered into the experimental animal. Then rectal temp was recorded after 1:30 hrs, 2.30hrs and 3.30hrs gradually.
Statistical analysis
The results are expressed as mean ± S.E.M. The statistical analysis was performed by analysis of variance (A.N.O.V.A) by Dunnett’s Multiple Comparison test.

RESULTS
Paracetamol is a common antipyretic agent, which is safe in therapeutic doses. The resultant effects of *Tephrosia Purpurea* root extracts on yeast-induced pyrexia in rats are depicted in Table 1. Experimental results exhibited that all the extracts of root produced a significant antipyretic effect to maintain a normal body temperature and reduce yeast induced elevated rectal temp in rat and their effect are comparable to that of standard antipyretic drug, paracetamol. It was observed that chloroform extract at a dose of 150 mg / kg body weight showed maximum antipyretic activity amongst other extracts. The result of the present study suggests that all the extracts of *Tephrosia Purpurea* significantly reduced the temperature of pyretic rats as the value of \(p < 0.05 \) was considered as statistically significant.

DISCUSSION
It was found that the different extracts of Cassia fistula bark are having the antipyretic effect. It was observed that methanol extract at a dose of 300 mg / kg body weight showed maximum antipyretic activity.

REFERENCES

Table 1: Antipyretic effect of *Cassia fistula* Linn (*Fabaceae*) bark in rats

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Treatment</th>
<th>Initial Temp. (°C)</th>
<th>Rectal Temperature °C in hour ± SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 Hour</td>
</tr>
<tr>
<td>1.</td>
<td>Control</td>
<td>37.50 ± 0.32</td>
<td>37.6 ± 0.26</td>
</tr>
<tr>
<td>2.</td>
<td>Paracetamol (150mg)</td>
<td>37.40 ± 0.40</td>
<td>39.0 ± 0.50</td>
</tr>
<tr>
<td>3.</td>
<td>Methanolic Extract (300mg/kg)</td>
<td>37.20 ±0.48</td>
<td>37.5 ± 0.92</td>
</tr>
<tr>
<td>4.</td>
<td>Pet.Ether Extract (300mg/kg)</td>
<td>37.40 ± 0.40</td>
<td>37.77 ±1.46</td>
</tr>
<tr>
<td>5.</td>
<td>Chloroform Extract (300mg/kg)</td>
<td>36.10 ± 0.07</td>
<td>37.2 ± 0.66</td>
</tr>
<tr>
<td>6.</td>
<td>Ethylacetate Extract (300mg/kg)</td>
<td>36.20 ± 0.05</td>
<td>37.36 ±0.65</td>
</tr>
</tbody>
</table>

Mean ± SEM, * \(p < 0.05 \), ** \(p < 0.001 \)

Source of support: Nil, Conflict of interest: None Declared