FREE RADICAL SCAVENGING ACTIVITY OF EVOLVULUS ALSINOIDES ON HYPOXIA INDUCED NEURODEGENERATION

Subramaniyan Navaneetha Krishnan1*, Adimoolam Senthil2, Paramasivam Suresh Kumar1, Sulaiman Mohideen1, Hemachandran Delhiraj3

1Dept of Pharmaceutics, Browns College of Pharmacy, Khammam, AP, India
2Dept of Pharmaceutics, Karavali College of Pharmacy, Mangalore, Karnataka, India
3Dept of Pharmaceutical analysis, Nimra College of Pharmacy, Vijayawada, AP., India

Received on: 12/12/2010 Revised on: 18/01/2011 Accepted on: 22/01/2011

ABSTRACT
The whole plant extract of evolvulus alsinoides was evaluated for its antioxidant activity in hypoxia induced neurodegeneration. The extract was given orally in to two different doses (200mg/kg and 400 mg/kg) for 7 days. Simultaneously rats were allowed to drink the water containing (2g/l) sodium nitrate. Parameters under study were TBAR, SOD, Nitrates and protein. The orally administrated extracts significantly decrease nitrates, TBAR levels and significantly increases the SOD in hypoxia induced rats. But the extract did not alter protein level in glutamate treated rats

KEYWORDS: Evolvulus alsinoides, monosodium glutamate, memantine, antioxidant activity

INTRODUCTION
Oxidative Stress is implicated as one of the primary factors that contribute to the development of neurodegenerative disease like Alzheimer’s, Parkinsonism and neurological conditions like epileptic seizures, stroke, brain damage, neurotrauma etc1. Inducement of synthesis of NO generation may precipitate hypoxia due to its more affinity to hemoglobin (Hb). Sodium nitrite oxidizes oxyhemoglobin to methemoglobin and also yielding nitrates (NO2), and nitrates (NO3). Nitric oxide binds slowly and reversibly to hemoglobin that eventually auto reduces by a first order reaction to HbFe2+NO. Further NO2 oxidises oxyhemoglobin by an auto catalytic reaction and finally NO2 bind reversibly to methemoglobin to yield a mixture of complexes. All this reaction put the biological system into oxidative stress and resulting apoptosis. This statement supports our findings with sodium nitrite administration in rats2. Evolvulus alsinoides a traditional ayurvedic medicine have a better neuro protection and antioxidant properties3.

MATERIALS AND METHODS

Plant Material
The plant was collected in the surroundings of Coimbatore and authenticated by Botanical Survey of India (BSI), Coimbatore, India.

Animals
Female Sprague Dawley Rats (150-180 g) were used for the study. Animals were procured from the central animal house of our institute. Animals were housed in a group of 4-5 in colony cages at ambient temperature of 25 ± 2°C and 45-55% relative humidity with 12 hours light/ dark cycle. They had free access to pellet chow (Brook bond, Lipton, India) and water ad libitum, animals were exposed only once to every experiment.

Extraction of Evolvulus alsinoides by cold maceration
The extracts of the plant Evolvulus alsinoides were prepared by cold maceration technique by treating with 50% ethanol for seven days. The extract was filtered and concentrated under vacuum. Finally the crude extract of Evolvulus alsinoides was separately treated with 1 ml of 10% ammonia solution and then extracted by shaking for 15 min at 60 °C with 5 ml methanol.
Experimental design
Hypoxia was induced by allowing the rats to drink water containing (2 g/l) sodium nitrite. The rats drinking about 20-25 ml NaNO₂ water per day were selected for study. *Evolvulus alsinoides* (200 & 400 mg/kg) were orally administered on nitrostative animals and they were subjected to biochemical estimation.

Experimental groups
Healthy female Sprague Dawley rats (150-180kg) were selected for this study. Experimental animal were grouped into four, contains six animals each and treated as follows: Group-I received vehicle and serve as control. Group-II received sodium nitrite drinking water (2g/l) serve as negative control. Group-III& IV received sodium nitrite drinking water (2g/l), simultaneously rats were treated with ethanolic extract of *evolvulus alsinoides* (200&400mg/kg, p.o) respectively serve as a treatment groups. The injections were administered above manner for 7 days.

Blood collection and preparation of brain tissues homogenate
On 14th day the Rats were euthanised by thiopental sodium (45 mg/kg i.p.), blood was collected for about 20 sec in a Eppendroff tubes, containing anti-coagulant solution (50 μl). The anti-coagulant treated blood was used for nitrate and SOD estimation. On 15th day Brain was collected from euthanised rats and hippocampus and striatum were removed and weighed immediately. The weighed samples were homogenized in chilled 10% KCl solution (10 ml/gm tissue). Homogenized samples were centrifuged at 2000 rpm for 10 min. Finally the clear supernatant was separated to measure TBAR, Protein levels.

Bio chemical estimation
The estimation of TBAR, SOD, Nitrates, Protein were determined by standard analytical kit.

Estimation of TBAR
The method was followed to estimate total amount of lipid peroxidation product (Thiobarbituric acid reacting substances) in the homogenate. The incubation mixture was prepared as shown in table:

<table>
<thead>
<tr>
<th>Ingredients with Volume</th>
<th>Tissue Homogenate supernatant</th>
<th>0.5 ml (brain)</th>
<th>8% sodium dodecyl sulphate (SDS)</th>
<th>0.2 ml</th>
<th>20% acetic acid solution</th>
<th>1.5 ml</th>
<th>(adjusted at pH 3.5 with 1N NaOH/ 0.1 N HCl)</th>
<th>0.9 aqueous solution of thiobarbituric acid</th>
<th>1.5 ml</th>
<th>(Adjusted to pH 7.4 with 1N NaOH/ 0.1 N HCl solution)</th>
</tr>
</thead>
</table>

The incubation mixture was made up to 5.0 ml with double distilled water and then heated in boiling water bath for 30 min. After cooling, the red chromogen was extracted into 5 ml of the mixture of n-butanol and pyridine (15:1v/v) centrifuged at 4000 rpm for 10 min, the organic layer was taken and its absorbance at 532 nm was measured. 1, 1, 3, 3 tetra ethoxypropane (TEP) was used as an external standard and the level of lipid peroxides was expressed as nmole of MDA/100g protein. The calibration curve for TEP was prepared by the above procedure taking TEP as standard. Linearity was obtained over the range of 80-240 nmoles of TEP.

Estimation of Total protein
Protein was estimated following the method. 50 μl of brain homogenate was incubated at room temperature for 20 min along with 45 0μl of distilled water and 5 μl of copper reagent. After 20 min 5 μl of 1N Fols phenol reagent was added and samples were vortexed. After 15 min the colour intensity was read at 640 nm. Protein calibration curve was prepared by taking bovine serum albumin (100 mg/ml) as standard. It is expressed as mg/protein.

Estimation of Nitrates
Nitrites concentration in the plasma/brain was determined as nitrates by using Griss reagent. 400 μl of plasma was mixed with equal volume of griss reagent, and the optical density was determined at 540 nm. A calibration curve was generated using 0.1 sodium nitrite as a standard. The nitrates level in the plasma expressed as μg/ml.

Estimation of SOD
The activity of SOD was estimated following the method. It involves the measurement of the inhibition of the formation of the blue coloured formozan dye from nitro blue tetrazolium (NBT) in the presence of phenazine methosulphate (PMS) and reduced nicotinamide adenine dinucleotide (NADH). The whole brain was dissected out following the procedure mentioned earlier. One unit of activity of SOD was defined as the amount of enzyme that inhibits the rate reaction by 50% under special conditions. The incubation mixture consisted of sodium pyrophosphate buffer (pH 8.3, 0.052 M, 1.2 μl), phenazine methosulphate (186 μM), nitroblue tetrazolium (300 μM) and NADH (780 μM, 0.2 μl). The reaction was initiated by the addition of NADH; following incubation was done for 90 seconds at 37°C the reaction was terminated by the addition of glacial acetic acid (1 ml). N-butanol (4 ml) was added, shaken vigorously, centrifuged at 4000 rpm for 1 min. and the upper butanol layer was read at λ 560 nm against butanol blank.

Statistical analysis
Biochemical data were subjected to one way ANOVA followed by Newman Keuls multiple comparison post hoc test, using Grad Pad Prism version 3.00 for windows.
(GradPad Software, San Diego, California, USA). A value of less than 0.05 has been taken as significant.

RESULTS

Effects of whole plant extracts of *Evolvulus alsinoides* on Nitrates level in normal and hypoxia induced rats

A significant increase in plasma nitrates was observed in hypoxia induced animals when compared with control group. Whereas, administration of *Evolvulus alsinoides* (200 & 400 mg/kg) decreased the nitrates level in comparison to sodium nitrite treated group. (Table 1)

Effects of whole plant extracts of *Evolvulus alsinoides* on super oxide dismutase level in normal and hypoxia induced rats

Sodium Nitrite significantly depleted the superoxide dismutase level in plasma. Administration of *Evolvulus alsinoides* (200 & 400 mg/kg) to the hypoxic rats significantly elevated the superoxide dismutase level. (Table 2)

Effects of whole plant extracts of *Evolvulus alsinoides* on protein level in normal and hypoxia induced rats

Sodium nitrate and *Evolvulus alsinoides* (200 & 400 mg/kg) did not alter the brain protein level. (Table 4)

DISCUSSION

Earlier reports revealed that animal treated with sodium nitrite in drinking water was resulted in hypoxic condition. It is well documented that hypoxia/ischemia condition may lead to an intracellular Ca$$^{2+}$$ overload which correlates to neuronal injury and degeneration and drugs which can prevent this influx of Ca$$^{2+}$$ were shown to prevent the neuronal degeneration against hypoxic/ ischemic conditions. Amnesia induced by sodium nitrite was correlated to the metabolic function involved in the biological system. It is also shown a close relationship between sodium nitrite induced oxidative metabolism and cholinergic function. Hypoxia and ischemia results over accumulation of glutamate and activate the post synaptic glutamate receptors, which initiate the detrimental biochemical cascade in the post synaptic neuron. These processes ultimately lead to DNA degradation, lipid peroxidation and neuronal cell death. Our present study revealed that the animals treated with *Evolvulus alsinoides* dose 200 & 400mg/kg/b.w. (p.o) was observed for significant antioxidant property and also it is proved by our present reports that sodium nitrite treatment in the rat leads to elevation in the nitrates and TBAR levels along with decreased SOD level indicates oxidative stress in the sodium nitrite administration. *Evolvulus alsinoides* significantly altered these enzyme variations in plasma and brain. Our findings also supported by Bhattacharya, et al., 1994

CONCLUSION

The role of oxidative stress in the genesis of neurodegeneration diseases has been widely studied. The high oxygen consumption rate coupled with low antioxidant potential of the brain is the main triggering factor for the enhanced release of free radicals. Oxidative stress is implicated in the pathogenesis of the number of neurodegenerative diseases like Alzheimer’s, Parkinsonism, Stroke, etc.

The present study concludes that *Evolvulus alsinoides* may be effective in therapy of various neurodegenerative diseases, which may be due to an effective free radical scavenging property of the plant, will be one of the reason.

In future, the study may be recommended to find out the active phytoconstituents which are responsible for antioxidant property. Further in anxiety there is a variety of neurotransmitters are said to be involved. A systematic investigation in effects of the *Evolvulus alsinoides* on major neurotransmitters involved may be investigated. These investigations are now in progress.

ACKNOWLEDGEMENTS

The authors are grateful to Dr.B.Suresh, Chancellor, J.S.S. Deemed University, Ooty for making available all the facilities for carrying out the study.

REFERENCES

Table 1: Effect of Evolvulus alsinoides on plasma nitrite in hypoxic induced rats

<table>
<thead>
<tr>
<th>Groups</th>
<th>Nitrates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>11.57 ± 1.26<sup>acc</sup></td>
</tr>
<tr>
<td>Hypoxia</td>
<td>29.625 ± 2.35<sup>acc</sup></td>
</tr>
<tr>
<td>Hypoxia + EA 200 mg/kg</td>
<td>24.95 ± 2.60<sup>ac</sup></td>
</tr>
<tr>
<td>Hypoxia + EA 400 mg/kg</td>
<td>22.8 ± 1.48<sup>ac</sup></td>
</tr>
</tbody>
</table>

Data are Expressed as Mean ± SEM (n=3)
^{ac}P<0.01, ^{acc}P < 0.05 compared with control
^{ac}P<0.01, ^{acc}P<0.05 compared with Hypoxia
EA – Evolvulus alsinoides
Biochemical data were subjected to one way ANOVA followed by Newman Keuls multiple comparison post hoc test.

Table 2: Effect of Evolvulus alsinoides on superoxide dismutase in hypoxic induced rats

<table>
<thead>
<tr>
<th>Groups</th>
<th>SOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>18.91 ± 1.530<sup>acc</sup></td>
</tr>
<tr>
<td>Hypoxia</td>
<td>13.5 ± 1.28<sup>c</sup></td>
</tr>
<tr>
<td>Hypoxia + EA 200 mg/kg</td>
<td>17.06 ± 1.49</td>
</tr>
<tr>
<td>Hypoxia + EA 400 mg/kg</td>
<td>18.52 ± 1.98</td>
</tr>
</tbody>
</table>

Data are Expressed as Mean ± SEM (n=3)
^{ac}P<0.01, ^aP < 0.05 compared with control
^cP<0.01, ^cP<0.05 compared with Hypoxia
EA – Evolvulus alsinoides
Biochemical data were subjected to one way ANOVA followed by Newman Keuls multiple comparison post hoc test.

Table 3: Effect of Evolvulus alsinoides on brain TBAR in hypoxic induced rats

<table>
<thead>
<tr>
<th>Groups</th>
<th>Hippocampus</th>
<th>Striatum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0.123 ± 0.00</td>
<td>0.122 ± 0.02</td>
</tr>
<tr>
<td>Hypoxia</td>
<td>0.378 ± 0.02<sup>acc</sup></td>
<td>0.35 ± 0.03<sup>acc</sup></td>
</tr>
<tr>
<td>Hypoxia + EA 200 mg/kg</td>
<td>0.319 ± 0.01<sup>ac</sup></td>
<td>0.30 ± 0.03<sup>ac</sup></td>
</tr>
<tr>
<td>Hypoxia + EA 400 mg/kg</td>
<td>0.275 ± 0.03<sup>ac</sup></td>
<td>0.25 ± 0.04<sup>a</sup></td>
</tr>
</tbody>
</table>

Data are Expressed as Mean ± SEM (n=3)
^{ac}P<0.01, ^aP < 0.05 compared with control
^{ac}P<0.01, ^{ac}P<0.05 compared with Hypoxia
EA – Evolvulus alsinoides
Biochemical data were subjected to one way ANOVA followed by Newman Keuls multiple comparison post hoc test.

Table 4: Effect of Evolvulus alsinoides on total proteins in hypoxia induced rats

<table>
<thead>
<tr>
<th>Groups</th>
<th>Hippocampus</th>
<th>Striatum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>1.09 ± 0.10</td>
<td>1.03 ± 0.05</td>
</tr>
<tr>
<td>Hypoxia</td>
<td>1.07 ± 0.03</td>
<td>1.00 ± 0.05</td>
</tr>
<tr>
<td>Hypoxia + EA 200 mg/kg</td>
<td>1.05 ± 0.112</td>
<td>1.02 ± 0.04</td>
</tr>
<tr>
<td>Hypoxia + EA 400 mg/kg</td>
<td>1.00 ± 0.07</td>
<td>0.99 ± 0.09</td>
</tr>
</tbody>
</table>

Data are Expressed as Means ± SEM (n=3)
Biochemical data were subjected to one way ANOVA followed by Newman Keuls multiple comparison post hoc test.

Source of support: Nil, Conflict of interest: None Declared