SYNTHESIS AND BIOLOGICAL ACTIVITY OF FURAN DERIVATIVES
Verma Anupam*, Pandeya S.N., Sinha Shweta
Saroj Institute of Technology and Management, Ahmamau, Arjunganj, Lucknow, India

Received on: 09/06/2011 Revised on: 20/07/2011 Accepted on: 12/08/2011

ABSTRACT
Furan derivative are an important class of heterocyclic compound that possess important biological properties. From last few decades a considerable amount of attention has been focussed on synthesis of Furan derivatives and screening them for different pharmacological activities.

INTRODUCTION
Furan, Fig.1, The name furan comes from the Latin furfur, which means bran. The first furan derivative to be described was 2-furoic acid, by Carl Wilhelm Scheele in 1780

Furan is a class of organic compounds of the heterocyclic aromatic series characterized by a ring structure composed of one oxygen atom and four carbon atoms. The simplest member of the furan family is furan itself, a colourless, volatile, and somewhat toxic liquid that boils at 31.36° C (88.45° F). Several other members of the furan family are produced on a large scale for use as solvents and chemical raw materials. The first furan compound discovered was pyromucic acid (2-furoic acid), prepared in 1780

Furan and related compounds have been reported to possess various biological activities such as Antihyperglycemic, Analgesic, Antiinflammatory, Antibacterial, Antifungal, Antitumor and Anticonvulsant etc. Slight change in substitution pattern in furan nucleus causes distinguishable difference in their biological activities. In this review we are discussing about synthesis and various biological activities of newly synthesized furan derivatives.

Keyword: Furan, Antihyperglycemic, Analgesic, Anticonvulsant activity.

*Author for Correspondence
Anupam Verma, Student, Saroj institute of Technology and Management, Ahmamau, Lucknow, India
E-mail: anupam.knimt@gmail.com

SYNTHESIS OF SUBSTITUTED FURAN DERIVATIVES

Scheme 1
The oxime-olefin was synthesized by cycloaddition reaction with substituted olefins in the presence of chloramine-T to produce isoxazolines.

Scheme 2
The (5-mercapto-indol-1-yl)-acetic acid core was prepared by alkylation commercially available 5 benzylxoyindole in dimethylformamide with methylbromoacetate using sodium hydride as base. The resulting compound was then de-benzylated using hydrogen and palladium as catalyst.

Scheme 3
Compound (3) were synthesized by Suzuki coupling reaction using palladium catalyst from 6 bromo-2-hydroxy-3-methoxybenzaldehyde (2). PdCl2(P(o-tol))3 was a good catalyst for the reaction. The 4-aryl benzofurans (6) were obtained.

Scheme 4
For the preparation of 4-thiazolyl benzofurans, compound (2) was bromoacetylated by Friedel Crafts reaction, then cyclization using thioamide to give compound 9. Subsequent hydrolysis and amidation gave the desired compound.

Scheme 5
1-(2-benzofuryl)-3-aryl-2-propen-1-ones 12a-c were prepared by reaction of 2-acetylbenzofuran 11 with aromatic aldehyde. The 1-(benzofuran-2-yl)-4-nitro-3-arylbutan-1-ones 39a-c were prepared by reacting equimolecular amount of 38a-c with nitromethane in...
boiling ethanol and in the presence of basic catalyst7 Fig.6

Scheme 6
Direct reduction of conjugated ester 13 to eganol 15 was performed by using LiAlH\textsubscript{4} or LiBH\textsubscript{4} as shown in scheme8 Fig.7

Scheme 7
Khan isolated a new egonal derivative, 5-(3-propanoyloxypropyl)-7-methoxy-2-(3,4-methylenedioxyphenyl) benzofuran 43 from Styraxobassia8 Fig.8

BIOLOGICAL ACTIVITY

Antibacterial Activity
Hatam A. Abdel-Aziz et al synthesized compound that showed a variable potencies against tested bacteria. The tested compound (1E-2E)-1-(Piperidin-1-yl)-1-[(4-nitrophenyl hydrazonal]-2-[(3-methylbenzofuran-2-oyl)hydrazono] propane exhibited weak inhibitory effect against the Gram-negative bacterium E.Coli (1) whereas they revealed no effect, or very weak against P.aerogenosa9 Fig.9

Anticonvulsant
Dawood newly synthesized benzotriazole derivatives were screened for anticonvulsant activity in maximal electroshock seizure (MES) and subcutaneous metrazole test in mice. The test compound 2-(5-Acetyl-3-phenyl-1,3,4-thiadiazole-2-ylidene)-1-(2-benzofuryl)-2-(1-benzotriazolyl)-ethanone were found to be active in subcutaneous metrazole8 Fig.10

Antinociceptive Effect
Dawood newly synthesized benzotriazole derivative to show antinociceptive effect. The pyrazole derivative 3-acetyl-1-aryl-5-(benzofuran-2-yl)-4-(benzotriazol-1-yl) pyrazoles showed a higher antinociceptive activity. It was assessed by three different models: the acute acid induced writhing test, hot plate test and tail flick test. Some benzotriazole derivative exhibited antinociceptive effect as shown in compound8 Fig.11

Antifungal activity
Abdel-Aziz AAI Mekawy in 2009 synthesized various compound like (1Z,2E)-N-(aryl)propaneydrazonoyl chloride bearing active methyl group used as C-nucleophiles. The newly synthesized benzofuran–based (1E)-1-(Piperidin-1-yl)-N2-arylamidrazones have significant antifungal activity11. Fig.12

Antitumor Activity
Galal synthesize a new series benzofuran derivative by the reaction of the furochromone-carboxaldehydes with different heterocyclic amines to yield the benzofuran-5-carboxyl derivative. The synthesized compound were tested against twelve different human cancer cell lines and all of the compound were more potent than the comparative standard12. Fig 13

Antiviral
Galal et al. 2009 synthesized derivatives can serve as lead compound for further investigation and act as antiviral activity. Compound (11H-Benzo[4,5] imidazol[1,2-a][1,4] diazepin-4-yl) (6-hydroxy-4,7-dimethoxy-benzofuran-5-yl) methane13. Fig 14

Antiinflammatory
Dawood synthesized benzofuran-benzotriazole-based heterocycles compound. The thiadiazole derivative 2-(5-Acetyl-3-phenyl-1,3,4-thiadiazole-2-ylidene)-1-(2-benzofuryl)-2 (1 benz tri zol yl) ethanone was the most potent anti-inflammatory compound. The anti inflammation effect of the thiazolidine ester derivative is higher than that of it acetyl derivative10. Fig.15

CONCLUSION
Different Derivatives of furan were synthesized and characterized by the spectral method such as IR & NMR

ACKNOWLEDGEMENT
The author wish to thanks, Dr S.N. Pandeya and Central Drug Research Institute., Lucknow for providing facilities to carry out the review work reported in this article.

REFERENCES

8. BF Abdel-Wahab, Hatem A Abdel-Aziz, Essam M Ahmed, Synthesis and antimicrobial evaluation of 1-(benzofuran-2-yl)-4-nitro-3-arylbutan-1-ones and 3-(benzofuran-2-yl)-4,5-dihydro-5-aryl-1-[4-(aryl)-1,3-thiazol-2-yl]-1H-pyrazoles. European journal of medicinal chemistry 2009;44: 2632-2635.

Fig.1

Fig.2

Fig.3
Fig. 6

\[\text{11} \overset{\text{CH}_3}{\longrightarrow} \text{12a-c} \]

\[\text{12} \begin{array}{c|c}
\text{a} & \text{Ph} \\
\text{b} & 4-\text{Cl-C}_6\text{H}_4 \\
\text{c} & 4-\text{MeO-C}_6\text{H}_4 \\
\end{array} \]

Fig. 7

\[\text{13} \overset{\text{LiA}1\text{H}_4 \text{or LiB}_4}{\longrightarrow} \text{14} + \text{15} \]

\[\text{HO} \overset{\text{CH}_3}{\longrightarrow} \text{Me} \]

\[\text{OH} \overset{\text{Me}}{\longrightarrow} \text{Me} \]
Fig. 8

Fig. 9

N'-[(2E)-1-chloro-1-[2-(4-nitrophenyl)hydrazinyl]propan-2-ylidene]-3-methyl-1-benzofuran-2-carbohydrazide

Fig 10

Fig. 11

Fig. 12

Fig. 13
Fig. 14

Fig. 15