MOUTH DISSOLVING TABLET: AN OVERVIEW
P.S.G.V.P.M’s College of Pharmacy, Shahada, Dist. Nandurbar, Maharashtra, India

Received on: 19/06/2011 Revised on: 24/07/2011 Accepted on: 05/08/2011

ABSTRACT
Mouth dissolving Tablets disintegrate and/or dissolve rapidly in the saliva without the need for water. Some tablets are designed to dissolve in saliva extremely fast, within a few seconds, and are true fast-dissolving tablets. Others contain agents to enhance the rate of tablet disintegration in the oral cavity, and are more appropriately termed fast-disintegrating tablets, as they may take up to a minute to completely disintegrate. Mouth or Fast dissolving tablets have been formulated for pediatric, geriatric and bedridden patients and in the many elderly persons will have difficulties in taking conventional oral dosage forms because of hand tremors and dysphagia. The technologies used for manufacturing fast-dissolving tablets are freeze-drying, spray-drying, molding, sublimation, sugar-based excipients, compression, and disintegration addition. As a result of increased life expectancy, the elderly constitute a large portion of the worldwide population today. These people eventually will experience deterioration of their physiological and physical abilities.

Key Word: Mouth dissolving tablet, Fast dissolving tablet, Dosage form

INTRODUCTION
Oral routes of drug administration are the most popular route of administration. The most popular solid dosage forms are being tablets and capsules; one important drawback of this dosage forms for some patients, is the difficulty to swallow. Drinking water plays an important role in the swallowing of oral dosage forms. Often times people experience inconvenience in swallowing conventional dosage forms such as tablet when water is not available, in the case of the motion sickness (kinetosis) and sudden episodes of coughing during the common cold, allergic condition and bronchitis. For these reason, tablets that can rapidly dissolve or disintegrate in the oral cavity have attracted a great deal of attention. Oral dispersible tablets are not only indicated for people who have swallowing difficulties, but also are ideal for active people. Mouth dissolving tablets are also called as fast dissolving tablets, melt-in mouth tablets, Oral dispersible tablets, rapimelts, porous tablets, quick dissolving etc. Mouth dissolving tablets are those when put on tongue disintegrate instantaneously releasing the drug which dissolve or disperses in the saliva. The faster the drug into solution, quicker the absorption and onset of clinical effect. Some drugs are absorbed from the mouth, pharynx and esophagus as the saliva passes down into the stomach. In such cases, bioavailability of drug is significantly greater than those observed from conventional tablets dosage form. The advantage of mouth dissolving dosage forms are increasingly being recognized in both, industry and academics. Their growing importance was underlined recently when European pharmacopoeia adopted the term “Oral dispersible tablet” as a tablet that to be placed in the mouth where it disperses rapidly before swallowing. According to European pharmacopoeia, the ODT should disperse/disintegrate in less than three minutes. The basic approach in development of FDT is the use of superdisintegrants like cross linked carboxymethyl cellulose (croscarmellose), sodium starch glycolate (primogel, explotab), polyvinylpyrrolidone (polyplasdone) etc, which provide instantaneous disintegration of tablet after putting on tongue, their by release the drug in saliva. The bioavailability of some drugs may be increased due to absorption of drug in oral cavity and also due to pregastric absorption of saliva containing dispersed drugs that pass down into the stomach. More ever, the amount of drug that is subjected to first pass metabolism is reduced as compared to standard tablet. The technologies used for manufacturing fast-dissolving tablets are freeze-drying, spray-drying,
tablet molding, sublimation, sugar-based excipients, tablet compression, and disintegration addition. As a result of increased life expectancy, the elderly constitute a large portion of the worldwide population today. These people eventually will experience deterioration of their physiological and physical abilities.

Definition
A Mouth dissolving drug delivery system, in most cases, is a tablet that dissolves or disintegrants in the oral cavity without the need of water or chewing.

Advantages of FDT
1. Administration to the patients who cannot swallow, such as the elderly, stroke victims, bedridden patients, patients affected by renal failure & patients who refuse to swallow such as pediatric, geriatric & psychiatric patients.
2. Achieve increased bioavailability/rapid absorption through pregastric absorption of drugs from mouth, pharynx & oesophagus as saliva passes down.
3. Good mouth feel property helps to change the perception of medication as bitter pill particularly in pediatric patients.
4. The risk of choking or suffocation during oral administration of conventional formulations due to physical obstruction is avoided, thus providing improved safety.
5. New business opportunity like product differentiation, product promotion, patent extension and life cycle management.

Requirements of mouth dissolving tablets
An ideal MDT should
1. Require no water for oral administration, yet dissolve/ disperse/ disintegrate in mouth in a matter of seconds.
2. Have a pleasing mouth feel.
3. Have an acceptable taste masking property.
4. Must be harder and less friable.
5. Leave minimal or no residue in mouth after administration.
6. Exhibit low sensitivity to environmental conditions (temperature and humidity).
7. Allow the manufacture of tablet using conventional processing and packaging equipments.

Following conventional techniques are used for preparation of mouth dissolving drug delivery system

Disintegrant Addition
Disintegrant addition technique is one popular technique for formulating Fast-dissolving tablets because of its easy implementation and cost-effectiveness. The basic principle involved in formulating Fast-dissolving tablets by disintegrant addition technique is addition of superdisintegrants in optimum concentration so as to achieve rapid disintegration along with the good mouth feel. List of superdisintegrants is shown in Table 1.

Freeze Drying
A process in which water is sublimed from the product after freezing. Lyophiliation is a pharmaceutical technology which allows drying of heat sensitive drugs and biological at low temperature under conditions that allow removal of water by sublimation. Lyophiliation results in preparations, which are highly porous, with a very high specific surface area, which dissolve rapidly and show improved absorption and bioavailability.

Moulding
In this method, molded tablets are prepared by using water-soluble ingredients so that the tablets dissolve completely and rapidly. The powder blend is moistened with a hydro-alcoholic solvent and is molded into tablets under pressure lower than that used in conventional tablet compression. The solvent is then removed by air-drying. Molded tablets are very less compact than compressed tablets. These possess porous structure that enhances dissolution.

Sublimation
The slow dissolution of the compressed tablet containing even highly water-soluble ingredients is due to the low porosity of the tablets. Inert solid ingredients that volatilize readily (e.g. urea, ammonium carbonate, ammonium bicarbonate, hexa methylene tetramine, camphor etc.) were added to the other tablet ingredients and the mixture is compressed into tablets. The volatile materials were then removed via sublimation, which generates porous structures. Additionally, several solvents (e.g. cyclohexane, benzene) can be also used as pore forming agents.

Spray-Drying
Spray drying can produce highly porous and fine powders that dissolve rapidly. The formulations are incorporated by hydrolyzed and non hydrolyzed gelatins as supporting agents, mannitol as bulking agent, sodium starch glycolate or crosscarmelloose sodium as disintegrating and an acidic material (e.g. citric acid) and/ or alkali material (e.g. sodium bicarbonate) to enhance disintegration and dissolution. Tablet compressed from the spray dried powder disintegrated within 20 seconds when immersed in an aqueous medium.

Mass-Extrusion
This technology involves softening the active blend using the solvent mixture of water soluble polyethylene glycol, using methanol and expulsion of softened mass through the extruder or syringe to get a cylinder of the product into even segments using heated blade to form tablets. The dried cylinder can also be used to coat
granules of bitter tasting drugs and thereby masking their bitter taste.

Direct Compression

It is the easiest way to manufacture tablets. Conventional equipment, commonly available excipients and a limited number of processing steps are involved in direct compression. Also high doses can be accommodated and final weight of tablet can easily exceed that of other production methods. Directly compressed tablet disintegration and solubility depends on single or combined action of disintegrants, water soluble excipients and effervescent agent.4,5.

Patented technologies for fast dissolving tablets

Zydis Technology

A Zydis tablet is produced by lyophilizing or freeze-drying the drug in a matrix usually consisting of gelatin. The product is very lightweight and fragile, and must be dispensed in a special blister pack. Patients should be advised not to push the tablets through the foil film, but instead peel the film back to release the tablet. The Zydis product is made to dissolve on the tongue in 2 to 3 seconds. The Zydis formulation is also self-preserving because the final water concentration in the freeze-dried product is too low to allow for microbial growth.

Durasolv Technology

Durasolv is the patented technology of CIMA labs. The tablets made by this technology consist of a drug, fillers and a lubricant. Tablets are prepared by using conventional tableting equipment and have good rigidity. These can be packed into conventional packaging system like blisters. Durasolv is an appropriate technology for products requiring low amounts of active ingredients.11.

Orasolv Technology

Orasolv Technology has been developed by CIMA labs. In this system active medicament is taste masked. It also contains effervescent disintegrating agent. Tablets are made by direct compression technique at low compression force in order to minimize oral dissolution time. Conventional blenders and tablet machine is used to produce the tablets. The tablets produced are soft and friable and packaged in specially designed pick and place system.

Flash Dose Technology

Flash dose technology has been patented by Fuisz. Nurofen meltlet, a new form of ibuprofen as melt-in-mouth tablets, prepared using flash dose technology is the first commercial product launched by Biovail Corporation. Flash dose tablets consist of self binding shear form matrix termed as "floss". Shear form matrices are prepared by flash heat processing.

Wowtab Technology

Wowtab Technology is patented by Yamanouchi Pharmaceutical Co. WOW means "Without Water ". In this process, combination of low mouldability saccharides and high mouldability saccharides is used to obtain a rapidly melting strong tablet. The active ingredient is mixed with a low mouldability saccharide and granulated with a high mouldability saccharide and compressed into tablet.

Flashtab Technology

Prographarm laboratories have patented the Flashtab technology. Tablets prepared by this system consist of an active ingredient in the form of micro crystals. Drug micro granules may be prepared by using the conventional techniques like coacervation, micro encapsulation, and extrusion spheronisation. All the processing utilized conventional tableting technology.

Drugs to be promising incorporated in mouth dissolving tablets

There are no particular limitations as long as it is a substance which is used as a pharmaceutical active ingredient.

Analgesics and Anti-inflammatory Agents

Alloxiprin, Auranozin, Azapropazone, Benorylate, Diflunisal, Etodolac, Fenbufen, Fenoprofen, Calcim, Flurbiprofen, Ibuprofen, Indomethacin, Ketoprofen, Meclofenamic Acid, Mefenamic Acid, Nabumetone, Naproxen, Oxaprozin, Oxyphenbutazone, Phenybutazone, Piroxicam, Sulindac.

Anthelmintics

Albendazole, Bephenium Hydroxynaphthoate, Cambendazole, Dichlorophen, Ivermectin, Mebendazole, Oxarninniquine, Oxendazole, Oxantel Embonate, Praziquantel, Pyrantel Embonate, Thiabendazole.

Anti-Arrhythmic Agents

Amiodarone, Disopyramide, Flecaainide Acetate, Quinidine Sulfate, Anti-bacterial Agents

Benethamine, Penicillin, Cinoxacin, Ciprofloxacin, Clarithromycin, Clofazimine, Cloxacillin, Demeclocycline, Doxycycline, Erythromycin, Ethanomamide, Imipenem, Nalidixic Acid, Nitrofurantoin, Rifampicin, Spiramycin, Sulphabenzamide, Sulphadoxine, Sulphamerazine, Sulphacetamide, Sulphadiazine, Sulphafurazole, Sulphamethoxazole, Sulphapyridine, Tetracycline, Trimethoprim.

Anti-coagulants

Dicoumarol, Dipryidamole, Nicoumalone, Phenindione.

Anti-Depressants

Amoxapine, Clicazindol, Maprotiline, Mianserin, Nortriptyline, Trazodone, Trimipramine Maleate, Acetohexamide, Chlorpropamide.
Glibenclamide, Gliclazide, Glipizide, Tolazamide, Tolbutamide.

Anti-Epileptics
Beclamide, Carbamazepine, Clonazepam, Ethotoin, Methoin, Methsuximide, Methylphenobarbitalone, Oxcarbazepine, Paramethadione, Phenacemide, Phenobarbitalone, Phentoynt, Phensuximide, Primidone, Sulthiame, Valproic Acid.

Anti-Fungal Agents

Anti-Hypertensive Agents
Amlodipine, Carvediol, Benidipine, Darodipine, Dilitazem, Diazoxide, Felodipine, Guanabenz Acetate, Indoramin, Isradipine, Minoxidii, Nicardipine, Nifedipine, Nimodipine, Phenoxybenzamine, Prazosin, Reserpine, Terazosin.

Anti-Malarials

Anti-Neoplastic Agents And Immunosuppressants
Aminoglutethimide, Amsacrine, Azathioprine, Busulphan, Chlorambucil, Cyclosporin, Dacarbazine, Estramustine, Etoposide, Lomustine, Melphalan, Mercaptopurine, Methotrexate, Mitomycin, Mitotane, Mitoxantrone, Procarbazine, Tamoxifen Citrate, Testolactone.

Anti Protozoal Agent
Benznidazole, Clioquinol, Decoquinate, Diodohydroxyquinoline, Diloxanide Furoate, Dinitolmide, Furzolidone, Metronidazole, Nimorazole, Nitrofurazone, Omidazole, Tinidazole.

Diuretics
Acetazolamnide, Amiloride, Bendrofluazide, Bumetanide, Chlorothiaizide, Chlorothalidone, Ethacrynic Acid, Frusemide, Metolazone, Spironalactone, Triamterene.

Anti-Parkinsonian Agents
Bromocriptine Mesylate, Lysuride Maleate.

Gastro-Intestinal Agents
Bisacodyl, Cimetidine, Cisaprid, Diphenoxylate, Domperidone, Famotidine, Loperamide, Mesalazine, Nizatidine, Omeprazole, Ondansetron, Ranitidine, Sulphasalazine.

Nitrates And Other Anti-Anginal Agents
Amyl Nitrate, Glyceryl Trinitrate, Isosorbide Dinitrate, Isosorbide Mononitrature, Pentaerythritol Tetranitrate.

EVALUATION OF GRANULES

Angle of Repose (θ)
The friction forces in a loose powder can be measured by the angle of repose (θ). It is an indication of the flow properties of the powder. It is defined as maximum angle possible between the surface of the pile of powder and the horizontal plane.

\[
\tan(\theta) = \frac{h}{r}
\]

Where, 0 is the angle of repose.

h is the height in cms

r is the radius in cms.

The powder mixture was allowed to flow through the funnel fixed to a stand at definite height (h). The angle of repose was then calculated by measuring the height and radius of the heap of powder formed. Care was taken to see that the powder particles slip and roll over each other through the sides of the funnel. Relationship between angle of repose and powder flow property. Angle of Repose and Type of flow is shown in Table 2.

Bulk Density
The bulk density of a powder primarily depends on particle size distribution, particle shape and the tendency of particles to adhere together. Bulk density is very important in size blending equipment. A standard procedure used for obtaining bulk density or its reciprocal bulkiness is given, below.

A sample of about 50 cm³ (blend) is carefully introduced in a 100ml graduated cylinder. The cylinder is dropped onto a hard wood surface three times from a height of 1 inch at two second interval. The bulk density is then obtained by dividing the weight of sample in gms by final volume in cm³.

\[
p_b = \frac{M}{V}
\]

Where

p_b = Bulk Density

M = Weight of sample in gm

V = Final volume of blend in cm³

Carr’s index (or) % compressibility
It indicates powder flow properties. It is expressed in percentage and is give by

\[
\frac{[(D_t - D_b)/D_t] \times 100}{1}
\]

Where, Dt is the tapped density of the powder and Db is the bulk density of the powder.

The % compressibility and Flow ability is shown in Table 3.
Hausner ratio
Hausner ratio is an indirect index of ease of powder flow. It is calculated by the following formula.

\[
\text{Hausner ratio} = \frac{D_t}{D_b}
\]

Where, \(D_t\) is the tapped density.
\(D_b\) is the bulk density.
Lower hausner ratio (<1.25) indicates better flow properties than higher ones (>1.25).

Bulkiness
Specific bulk volume or reciprocal of bulk density is called bulkiness or bulk. Bulkiness increases with a decrease in particle size. In mixture of material of different sizes, however the smaller particle shifts between the larger particles and tends to reduce the bulkiness.

The bulkiness can be calculated by the following formula

\[
\text{Bulkiness} = \frac{I}{p_b}
\]

where, \(p_b\) = Bulk Density.

Loose bulk density
It is defined as the ratio of weight of blend in gms to the loose bulk volume (untapped volume) in cm\(^3\). Loose bulk density is given by

\[
\text{Loose bulk density} = \frac{\text{Weight in gms}}{V_{b}}
\]

Void Volume
The volume of the spaces is known as the void volume "v" and is given by the formula

\[
V = V_b - V_p
\]

Where, \(V_b\) = Bulk volume (volume before tapping)
\(V\) = True volume (volume after tapping)

Porosity
The porosity \(\varepsilon\) of powder is defined as the ratio of void volume to the bulk volume of the packaging.

The porosity of the powder is given by

\[
\varepsilon = \frac{V_b - V_p}{V_p} = 1 - \frac{V_p}{V_b}
\]

Porosity is frequently expressed in percentage and is given as

\[
\% \varepsilon = (1 - \frac{V_p}{V_b}) \times 100
\]

The porosity of powder indicates the types of packaging a powder undergoes when subject to vibrations, when stored, or in tablet machine when passed through hopper or feed frame.

Percent Compressibility
It is an important measure obtained from bulk density and is defined as,

\[
C = \frac{(P_b - P_u)}{P_b} \times 100
\]

If the bed of particles is more compressible the blend will be less flowable and flowing materials.

EVALUATION OF MOUTH DISSOLVING TABLET
Tablets from all the formulation were subjected to following quality control test.

General Appearance
The general appearance of a tablet, its visual identity and over all "elegance" is essential for consumer acceptance. Include in are tablet's size, shape, colour, presence or absence of an odour, taste, surface texture, physical flaws and consistency and legibility of any identifying marking.

Size and Shape
The size and shape of the tablet can be dimensionally described, monitored and controlled.

Tablet thickness
Tablet thickness is an important characteristic in reproducing appearance and also in counting by using filling equipment. Some filling equipment utilizes the uniform thickness of the tablets as a counting mechanism. Ten tablets were taken and their thickness was recorded using micrometer.

Uniformity of weight
I.P. procedure for uniformity of weight was followed, twenty tablets were taken and their weight was determined individually and collectively on a digital weighing balance. The average weight of one tablet was determined from the collective weight. The weight variation test would be a satisfactory method of determining the drug content uniformity. The average weight of tablets and maximum percentage allowed are given in Table 4.

Tablet hardness
Hardness of tablet is defined as the force applied across the diameter of the tablet in the order to break the tablet. The resistance of the tablet to chipping, abrasion or breakage under condition of storage transformation and handling before usage depends on its hardness. Hardness of the tablet of each formulation was determined using Monsanto Hardness tester.

Friability
It is measured of mechanical strength of tablets. Roche friability was used to determine the friability by following procedure. A preweighed tablet was placed in the friablator. Friablator consist of a plastic-chamber that revolves at 25 rpm, dropping those tablets at a distance of 6 inches with each revolution. The tablets were rotated in the friablator at for least 4 minutes. At the end of test tablets were dusied and reweighed, the loss in the weight of tablet is the measure of friability and is expressed in percentage as

\[
\% \text{ Friability} = \frac{\text{loss in weight}}{\text{Initial weight}} \times 100
\]

In Vivo Disintegration test
The test was carried out on 6 tablets using the apparatus specified in I.P.-1996 distilled water at 37°C ± 2°C was used as a disintegration media and the time in second taken for complete disintegration of the tablet with no
palatable mass remaining in the apparatus was measured in seconds.

Wetting time
The method reported by yunixia et al., was followed to measure tablet wetting time. A piece of tissue paper (12 cm X 10.75 cm) folded twice was placed in a small petridish (ID = 6.5 cm) containing 6 ml of Sorenson's buffer pH 6.8. A tablet was put on the paper, and the time for complete wetting was measured. Three trials for each batch and the standard deviation was also determined.

In vitro dispersion time
In vitro dispersion time was measured by dropping a tablet in a beaker containing 50 ml of Sorenson's buffer pH 6.8. Three tablets from each formulation were randomly selected and *in vitro* dispersion time was performed.

Stability testing of drug (temperature dependent stability studies)
The Mouth dissolving tablets are packed in suitable packaging and stored under the following conditions for a period as prescribed by ICH guidelines for accelerated studies.

(i) 40 ± 1 °C
(ii) 50 ± 1 °C
(iii) 37 ± 1 °C and RH 75% ± 5%

The tablets were withdrawn after a period of 15 days and analyzed for physical characterization (Visual defects, Hardness, Friability, Disintegrations, Dissolution etc.) and drug content. The data obtained is fitted into first order equations to determine the kinetics of degradation. Accelerated stability data are plotting according Arrhenius equation to determine the shelf life at 25 °C.11, 12

Packaging
Expensive packaging, specific processing, and special care are required during manufacturing and storage to protect the dosage of other fast-dissolving dosage forms. Unlike these other quick-dispersing and/or dissolving oral delivery systems, the system can be packaged using various options, such as single pouch, blister card with multiple units, multiple-unit dispenser, and continuous roll dispenser, depending on the application and marketing objectives. List of Marketed Mouth Dissolving Tablets are shown in Table No. 5.

CONCLUSION
Mouth dissolving tablets constitute an innovative dosage form, which overcomes the problem of swallowing and provides a quick onset of action. The pediatric and geriatric populations are the primary. Targets, as both the groups found it difficult to swallow conventional tablets.

The basic approach followed by all the currently available technologies engaged in the formulation of Fast dissolving tablets is to maximize the porous structure of the tablet matrix and incorporate super disintegrating agents in optimum concentration so as to achieve rapid disintegration and instantaneous dissolution of the tablet along with good taste masking properties and excellent mechanical strength. The availability of the various technologies and manifold advantages of Fast dissolving tablets will surely increase its popularity in the near future.

REFERENCES
Table 1: List of Superdisintegrants

<table>
<thead>
<tr>
<th>Superdisintegrants</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crosscarmellose®</td>
<td>Crosslinked Cellulose</td>
</tr>
<tr>
<td>Ac-Di-Sol®</td>
<td></td>
</tr>
<tr>
<td>Nymce ZSX®</td>
<td></td>
</tr>
<tr>
<td>Primellose®Solubex®</td>
<td></td>
</tr>
<tr>
<td>Crosspovidone</td>
<td>Crosslinked PVP</td>
</tr>
<tr>
<td>Crosspovidon M®</td>
<td></td>
</tr>
<tr>
<td>Kollidon®</td>
<td></td>
</tr>
<tr>
<td>Polyplasdone</td>
<td></td>
</tr>
<tr>
<td>Sodium starch glycolate</td>
<td>Crosslinked Starch</td>
</tr>
<tr>
<td>Explotab®</td>
<td></td>
</tr>
<tr>
<td>Primogel</td>
<td></td>
</tr>
<tr>
<td>Soy polysaccharides</td>
<td>Natural super Disintegrant</td>
</tr>
<tr>
<td>Emcosoy</td>
<td></td>
</tr>
<tr>
<td>Alginic acid NF</td>
<td>Crosslinked alginic acid</td>
</tr>
<tr>
<td>Satialgine</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Angle of Repose

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Angle of Repose (°)</th>
<th>Type of Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>< 20</td>
<td>Excellent</td>
</tr>
<tr>
<td>2</td>
<td>20 – 30</td>
<td>Good</td>
</tr>
<tr>
<td>3</td>
<td>30 – 34</td>
<td>Passable</td>
</tr>
<tr>
<td>4</td>
<td>> 34</td>
<td>Very Poor</td>
</tr>
</tbody>
</table>

Table 3: % Compressibility

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>% compressibility</th>
<th>Flow ability</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5 – 12</td>
<td>Excellent</td>
</tr>
<tr>
<td>2</td>
<td>12 – 16</td>
<td>Good</td>
</tr>
<tr>
<td>3</td>
<td>18 – 21</td>
<td>Fair Passable</td>
</tr>
<tr>
<td>4</td>
<td>23 – 35</td>
<td>Poor</td>
</tr>
<tr>
<td>5</td>
<td>33 – 38</td>
<td>Very Poor</td>
</tr>
<tr>
<td>6</td>
<td>< 40</td>
<td>Very Very Poor</td>
</tr>
</tbody>
</table>

Table 4: Uniformity of Weight

<table>
<thead>
<tr>
<th>Average weight of Tablets (mg)</th>
<th>Maximum percentage allowed</th>
</tr>
</thead>
<tbody>
<tr>
<td>130 or</td>
<td>10</td>
</tr>
<tr>
<td>130-324</td>
<td>7.5</td>
</tr>
<tr>
<td>More than 324</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 5: Marketed Fast Dissolving Tablets in India

<table>
<thead>
<tr>
<th>Name of the Product</th>
<th>Active Ingredients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imodium Lingual</td>
<td>Imodium</td>
</tr>
<tr>
<td>Pepcidin Raptab</td>
<td>Pepcid</td>
</tr>
<tr>
<td>Mosid – MT</td>
<td>Mosapride citrate.</td>
</tr>
<tr>
<td>Calritin Redtabs</td>
<td>Immediate Dissolving formulation of Calritin</td>
</tr>
<tr>
<td>Nimulid – MD</td>
<td>Nimesulide</td>
</tr>
<tr>
<td>Zyrof Meltab</td>
<td>Rofecoxib</td>
</tr>
<tr>
<td>Claritin Redtab</td>
<td>Micronized loratadine</td>
</tr>
<tr>
<td>Feldene Melt</td>
<td>piroxicam (10 or 20 mg),</td>
</tr>
<tr>
<td>Maxalt-MLT</td>
<td>Rizatriptan peppermint flavor</td>
</tr>
<tr>
<td>Pepcid RPD</td>
<td>famotidine (20 or 40 mg),</td>
</tr>
<tr>
<td>Zyprexa Zydiss</td>
<td>olanzapine (5, 10, 15 or 20 mg),</td>
</tr>
<tr>
<td>Zofran ODT</td>
<td>ondansetron strawberry flavor</td>
</tr>
<tr>
<td>Remeron Soltab</td>
<td>Mirtazepine orange flavor</td>
</tr>
</tbody>
</table>