TRIAZOLE: A POTENTIAL BIOACTIVE AGENT (SYNTHESIS AND BIOLOGICAL ACTIVITY)
Pandeya Surendra Nath, Pathak Ashish, Mishra Rupesh*
Saroj Institute of Technology and Management, Lucknow-226002, India

Received on: 14/08/11 Revised on: 20/09/11 Accepted on: 11/10/11

*Corresponding author
Email: rupesh.mishra763@gmail.com

ABSTRACT
Azoles belong to very important class of Antimicrobial drugs. Triazole is very important Azole which exists in two isomeric forms namely 1, 2, 3-Triazole and 1, 2, 4-Triazole. This Review Article covers the Different approaches to synthesize Triazoles having different substitution and their different biological activity. This Review article can be useful to synthesize new compounds having Triazole nucleus.

KEYWORDS: triazole, antimicrobial, anticonvulsant, antimicrobial, antidiabetic.

INTRODUCTION
Triazole belongs to one of the most widely used class of antifungal drugs known as azoles, based on their common feature, an imidazole or triazole ring. The first compound in this class was discovered by the Janssen group in the late 1960s1. Triazole refers to either one of a pair of isomeric chemical compounds with molecular formula C2H3N3, having a five-membered ring of two carbon atoms and three nitrogen atoms.

The two isomers are:

![Triazole Isomers](image)

The azoles act through inhibition of lanosterol-14a-demethylase (CYP51), a key enzyme involves in the biosynthesis of ergosterol a major component of fungal cell membranes. This enzyme catalyses the oxidative removal of a specific methyl group from lanosterol through a cytochrome-P450-dependent mechanism. The azoles act through coordination to the heme group, preventing coordination of the oxygen required to initiate oxidation1.

Different Scheme of Synthesis

Scheme-1
An efficient one-pot three-component synthesis of substituted-1,2,4-triazoles was developed by Michael utilizing a wide range of substituted primary amines, acyl hydrazine’s, and dimethylformamide dimethyl acetal. Intermediate compound 2 was prepared by the Michael method, and then compound 2 reacted with appropriate alkyl halide to produce target compounds 4-(4-alkoxylphenyl)-3-ethyl-4H-1,2,4-triazoles2.

Scheme-2
Peter c. wade, et. al synthesized a number of acyl derivatives of Triazole3.

Scheme-3
Pankaja k. kadaba synthesized number of closely related 1H-1,2,3-triazoles as a unique family of anticonvulsant agents. Unlike the traditional anticonvulsants, the dicarboximide moiety is absent from the triazole ring system4.
Scheme-4
The Reaction of aroyl chlorides (2) and thiosemicarbazides (3) in either chloroform or pyridine gave 1-arylothiosemicarbazides(4) which without purification were cyclized in refluxing aqueous sodium bicarbonate to yield the desired 2,4-dihydro-3H-1,2,3triazolethiones(5).

Scheme-5
A copper-catalyzed reaction under an atmosphere of air provides 1,2,4-triazole derivatives by sequential N-C and N-N bond-forming oxidative coupling reactions. Starting materials and the copper catalyst are readily available and inexpensive. A wide range of functional groups are tolerated.

Scheme-6
A Pd-catalyzed synthesis of 1H-triazoles from alkenyl halides and sodium azide represents a completely new reactivity pattern in the context of Pd chemistry.

Scheme-7
Copper(I) immobilized on 3-aminopropyl-functionalized silica gel catalyzed the reaction of terminal alkynes with benzyl- or alkyl halides and sodium azide in ethanol to give 1,4-disubstituted 1,2,3-triazoles in good to excellent yields. This procedure allows the conversion of unstable low-molecular-weight azides. Furthermore, the silica-supported copper could be recovered and recycled by simple filtration.

Scheme-8
Highly efficient one-pot synthesis of 1,2,3-triazole-linked glycoconjugates was presented involving a Cu(I) catalyzed 1,3-dipolar cycloaddition as the key step. It offers a convenient route to prepare neoglycoconjugates derived from unprotected saccharides or peracetylated saccharides.
Biological activities of Triazole

Antimicrobial Activity
Rao, G.K. et al synthesized a series of Schiff bases of Triazole(s) which show antibacterial as well as antifungal activity like10.

5-phenyl, 4-[(substituted) amino, 3-mercaptop 1,2,4-triazoles show anti-microbial activity.

Hanane Al Bay et al synthesized a series of six new N,N-bis (1,2,4-triazole-1-ylmethyl) amine, in one step condensation of 1-(hydroxy)methyl) with different amines and compounds were evaluated for their antifungal activity against the budding yeast *Saccharomyces cerevisiae* and their antibacterial activity against *Escherichia coli* following derivatives was found most active11.

Fig-Amine derivatives of triazole

Hypoglycemic Activity
M.Y. Mahasalkar et al synthesized a series of 21, 4-Alkyl-5-aryl-4H-1,2,4-triazole-3-thiols and screened these derivatives for hypoglycemic activity in rats. Five compounds showed significant activity of which 5-pchlorophenyl-4-ethyl-4H-1,2,4-triazole-3-thiol was most active. Tolbutamide was taken as standard drug12.

Anticonvulsant Activity
Pandeya et al synthesized a series of New-substituted Mercapto-triazoles and thiazolidiones derivatives and evaluated their MAO Inhibitory and anticonvulsant activity13.

Siddiqi et al synthesized a series of 3-[4-[(substituted phenyl) - 1, 3-thiazol -2- ynamino] -4-[substituted phenyl] -4,5-dihydro-1 H -1,2,4-triazole -5-thiones by clubbing thiazole and triazole moieties, keeping in view the structural requirement for the pharmacophore model for anticonvulsant activity. Two compounds c1 and c2 showed significant anticonvulsant activity in both MES and subcutaneous pentylentetrazole (sc PTZ) screenings along with good safety margin14.

Shalini M. et al synthesized a new series of 4,5-diphenyl-2H-1,2,4-triazol-3(4H)-one, all the compounds were evaluated for their anticonvulsant activity in four animal models of seizures, i.e. maximal electroshock seizure (MES), subcutaneous pentylentetrazole (sc PTZ), subcutaneous strychnine (sc STY), and subcutaneous picrotoxin (sc PIC)- induced seizure threshold tests. The compounds were also evaluated for neurotoxicity15.

Narayana B et al synthesized a series of Novel 8-chloro-6-(2fluorophenyl)-1-(aryl)-4H-[1,2,4]triazolo[4,3-a][1,4] benzodiazepines by treating 7-chloro-5-(2-fluorophenyl)-1,3-dihydro-2H-1,4-benzodiazepine-2-thione with various aromatic acid hydrazides. Compounds were tested for anticonvulsant activity. Four of the tested compounds exhibited excellent anticonvulsant activity in comparison with standard drug, diazepam16.
Antidepressant Activity
John M. Kane et al synthesized a series of 5-aryl-1,2,4-triazole-3H-1,2,4-triazole-3-thiones. More active member of this series was substituted by haloaryl groups at position 5 of the triazole nucleus and by methyl group at position 2 and 4 position. Several member of this series were potent antagonist of reserpine induced ptosis in mice.

Kaplançıklı ZA et al synthesized a series of triazole-pyrazoline derivatives and screened them using both modified forced swimming and tail suspension test. Rotarod test was also performed for the examination of probable neurological deficits due to the test compounds. Compounds k-a and k-b were more effective than the reference drug fluoxetine with respect to antidepressant activity.

Anticancer Activity
Yan S, et al synthesized a series of heterocyclic-fused 1,2,3 by 1, 3 -dipolar cycloaddition of heterocyclic ketene aminals or N, O-acetals with sodium azide and polyhalo isothalonitriles and evaluated in vitro against a panel of human tumor cell lines. Compound 4-Methoxy-phenyl substituted 1, 3 - oxazoheterocycle fused 1,2,3 triazole was found to be the most potent derivative against A431 and K562 human tumor cell lines.

Antimalarial Activity
Eric M. Guantai et al synthesized a series of triazole-linked chalcone and dienone hybrid compounds and evaluated their antimalarial activity. Several chalcone-chloroquine hybrid compounds were found to be notably active, with compound 1 the most active, exhibiting submicromolar IC50 values against the D10, Dd2 and W2 strains of Plasmodium falciparum.

Most active derivative

Krzysztof Sztanke et al synthesized a series of 3-unsubstituted and 3- substituted 7-aryl-5H-6,7-dihydroimidazo[2,1-c]1,2,4-triazoles derivatives and evaluated there anticancer activity. Compound H was found to be the most effective in vitro against human colon adenocarcinoma cell line (LS180).

Anti inflammatory Activity
Wade P. C. et al synthesized a series of 1-acyl-3-phenyl-5-alkyltriazoles, and evaluated these derivatives for anti-inflammatory activity using the mouse active Arthus (MAA) reaction as the test system. Modification of the acyl group, 4-phenyl substituent, and alkyl group led to the selection of the most active member of this series, 1-acetyl-3-(4-chlorophenyl)-5-methyl-1,2,4-triazole.

Tozkoparan B et al synthesized a series of 3-[1-(4-(2-methylpropyl) phenyl) ethyl]-1,2,4- triazole-5-thione derivatives and evaluated their anti-inflammatory activity in gastric ulceration studies the synthesized compounds were generally found to be safe at a 200 mg/kg dose level.

International Journal of Research in Ayurveda & Pharmacy
REFERENCES

4. Pankaja k kadaba, 1,2,3-Triazolines and Triazoles , a new class of anticonvulsant Drug, design and structure activity relationship, J Med Chem. 1988; 31:196

5. John M Kane, Bruce M Baron , Mark W Dudly, Stephen M Sorensen, Michael A Staeg And Francis P Miller, 2,4-Dihydro-3H-1,2,4-triazol-3-ones as Anticonvulsant Agents, J.Med.Chem.1990;33:2772-2777

18. John M Kane, Bruce M Baron, Mark W Dudly, Stephen M Sorensen, Michael A Staeg And Francis P Miller. 2,4-Dihydro-3H-1,2,4-triazol-3-ones as Anticonvulsant Agents, J.Med.Chem.1990;33:2772-2777

