ABSTRACT

The aim of this study was to prepare fast disintegrating tablets of Ziprasidone by using various superdisintegrant. The tablets were prepared using mannitol as diluent and Kyron T-134 as taste masking agent along with three different levels of superdisintegrant. The superdisintegrant used in this study were Crosspovidone, Croscarmelose sodium and Sodium starch glycolate. The tablets were evaluated for weight variation, hardness, friability, wetting time, water absorption ratio, and disintegration time (DT) and dissolution study. Using the same excipients, the tablets were prepared by direct compression and were evaluated in the similar way. From the results obtained, it can be concluded that the tablet formulation prepared with 9% Crosspovidone showed Disintegration time of 12 seconds. Also the hardness, friability, dissolution rate (ZD3) were found to be acceptable according to standard limits.

KEYWORDS: Ziprasidone, Fast disintegrating tablets (FDT’s), Direct Compression, Kyron T-134

INTRODUCTION

The concept of fast dissolving drug delivery system emerged from the desired to provide patient with conventional means of taking their medication. Fast dissolving dosage form can be disintegrated, dissolved or suspended by saliva in mouth. The fast dissolving tablets disintegrates instantaneously when placed on tongue and releases the drug dissolve or disperses In saliva.1 The fast dissolving tablets are useful in patients,2,3 like pediatric, geriatric, bedridden or mentally disabled, who may face difficulty in swallowing conventional tablet or capsule leading to ineffective therapy.4 Most pharmaceutical forms for oral administration are formulated for direct ingestion or for chewing or for prior dispersion/dissolution in water. Some of them are absorbed in mouth (sublingual or buccal tablet) to obviate the problem associated with conventional dosage forms orally fast dissolving tablet have been developed which combine hardness, dosage uniformity, stability and other parameters, since no water is required for swallowing the tablets and they are thus suitable for geriatric, pediatric and travelling patients.6

The fast dissolving tablet formulation is defined by the food and drug administration (FDA) as, “A solid dosage form containing medicinal substances which disintegrates rapidly, usually within matter of seconds, when placed upon the tongue.”7 It is difficult for many patient to swallow tablets and hard gelatine capsule hence they do not comply with prescription, which results in high incidence of non compliance and ineffective therapy. Such problem can be resolved by mean of fast dissolving tablet. These FDT are designed to dissolve or disintegrates rapidly in saliva generally within <60 second.3

Ziprasidone is an novel atypical antipsychotic with unique pharmacological profile and is approved by FDA in Feb 2001 for the treatment of psychiatric disorder.8 Half life of ziprasidone is 7 hours and undergoes extensive first pass metabolism, Oral ziprasidone appear efficacious and has been shown to have some clinical advantages over chlorpromazine and haloperidol.9 Ziprasidone oral bioavailability is about 60% in healthy volunteers when taken with food, which increases absorption by more than 50%. Peak plasma concentration occur in 3.7-4.7 hours.10 Hence in the present work Ziprasidone fast dissolving tablets were prepared by direct compression technique by using different superdisintegrants.

MATERIALS AND METHODS

Ziprasidone was gifted by Dr.Reddy’s Labs Hyderabad, crosspovidone; croscarmelose sodium and sodium starch glycolate were received as gift samples from Maple Biotech, Pune, Kyron T-134 was received from Coral Labs,Ahamadabad and all other chemicals and reagents were of analytical grade.

Preparation of Ziprasidone fast dissolving tablets

Fast dissolving tablets of Ziprasidone were prepared by direct compression method according to the formula given in Table no 1. All the ingredients were passed through 60 mesh sieve separately. The drug and mannitol was mixed by small portion of both each time and blending it to get a uniform mixture kept aside. Then the ingredients were weighed and mixed in geometrical order and tablets were compressed of 6mm sizes flat round punch to get tablet using Rimek Compression Machine.11

Evaluation of Tablets

Angle of repose (θ)

Angle of repose is defined as the maximum angle possible between the surface of a pile of the powder and horizontal plane. The frictional force in a loose powder or granules can be measured by angle of repose.

\[
\tan \theta = \frac{h}{r}
\]

\[
\theta = \tan^{-1} \left(\frac{h}{r} \right)
\]

Where, ‘θ’ is the angle of repose, ‘h’ is height of pile, ‘r’ is radius of the base of pile

Bulk density is defined as the mass of a powder divided by the bulk volume. The bulk density of a powder depends primarily on particle size distribution, particle
Friability test

The measuring cylinder containing a known mass of blend was tapped for a fixed time. The minimum volume (V_t) occupied in the cylinder and the weight (M) of the blend was measured. The tapped density (ρ_t) was calculated using the following formula.\[^{13}\]

$$\rho_t = \frac{M}{V_t}$$

Hausner’s ratio

Hausner ratio is an indirect index of ease of power flow. It is calculated by the following formula.

$$\text{Hausner ratio} = \frac{\rho_t}{\rho_d}$$

Where ρ_t is tapped density and ρ_d is bulk density. Lower Hausner ratio (<1.25) indicates better flow properties than higher ones (>1.25).\[^{13}\]

Carr’s compressibility index

The compressibility index of the granules was determined by Carr’s compressibility index. Carr’s Index (%) can be calculated by using the following formula.\[^{13}\]

$$\text{Carr’s Index} (%) = \frac{\text{TD} - \text{BD}}{\text{TD}} \times 100$$

Hardness test

Tablets require a certain amount of strength, or hardness and resistance to friability, to withstand mechanical shocks of handling in manufacture, packaging and shipping. The hardness of the tablets was determined using Monsanto Hardness tester. It is expressed in Kg/cm². Three tablets were randomly picked from each formulation and the mean and standard deviation values were calculated.\[^{14}\]

Friability test

It is the phenomenon whereby tablet surfaces are damaged and/or show evidence of lamination or breakage when subjected to mechanical shock or attrition. The friability of tablets was determined by using Veego Friabilator. It is expressed in percentage (%). Twenty tablets were initially weighed (W_{initial}) and transferred into friabilator. The friabilator was operated at 25 rpm for 4 minutes or run up to 100 revolutions. The tablets were weighed again (W_{final}). The percentage friability was then calculated by,

$$F = \frac{W_{\text{initial}} - W_{\text{final}}}{W_{\text{initial}}} \times 100$$

% Friability of tablets less than 1% is considered acceptable.\[^{14}\]

Weight variation test

The tablets were selected randomly from each formulation and weighed individually to check for weight variation. The U.S Pharmacopoeia allows a little variation in the weight of a tablet. The following percentage deviation in weight variation is allowed.\[^{14}\]

Uniformity of thickness

The crown thickness of individual tablet may be measured with a micrometer, which permits accurate measurements and provides information on the variation between tablets. Other technique employed in production control involves placing 5 or 10 tablets in a holding tray, where their total crown thickness may be measured with a sliding caliper scale. The tablet thickness was measured using screw gauge.\[^{14}\]

Drug content uniformity

Four tablets weighted and crushed in a mortar then weighed powder contain equivalent to 100mg of drug transferred in 100ml distill water. Its concentration was 1000 mcg/ml. 10ml from this stock solution taken and diluted to 100ml distilled water; it makes 100mcg/ml. Then 20µg/ml solution prepared by taking 2ml from stock solution and diluted to 10ml. Absorbance measure at 223nm.\[^{14}\]

Wetting time

The method was applied to measure tablet wetting time. A piece of tissue paper folded twice was placed in a small petri dish (i.d. = 6.5 cm) containing 10 ml of water, a tablet was placed on the paper, and the time for complete wetting was measured. Three trials for each batch were performed and standard deviation was also determined. The method was reported by Yunxia Bi et al.\[^{14}\]

Water absorption ratio

A piece of tissue paper folded twice was placed in a small petri dish containing 6ml of water. A tablet was put on the paper and time required for complete wetting was measured. The wetted tablet was then weighed. Water absorption ratio, R was determined using following equation.

$$R = 100 \left(\frac{W_a - W_b}{W_b} \right)$$

Where, W_b – weight of tablet before absorption, W_a – weight of tablet after absorption

Three tablets from each formulation were performed and standard deviation was also determined.\[^{14}\]

In vitro disintegration time

The process of breakdown of a tablet into smaller particles is called as disintegration. The *in-vitro* disintegration time of a tablet was determined using disintegration test apparatus as per I.P. specifications. I.P. Specifications: Place one tablet in each of the 6 tubes of the basket. Add a disc to each tube and run the apparatus using pH 7.4 (simulated saliva fluid) maintained at 37° ± 2°C as the immersion liquid. The assembly should be raised and lowered between 30 cycles per minute in the pH 7.4 maintained at 37° ± 2°C. The time in seconds taken for complete disintegration of the tablet with no palpable mass remaining in the apparatus was measured and recorded.\[^{14}\]

In vitro dissolution studies

Dissolution rate was studied by using USP type-II apparatus (USP XXIII Dissolution Test Apparatus at 50 rpm) using 900ml of phosphate buffer pH (7.4) as dissolution medium. Temperature of the dissolution medium was maintained at 37 ± 0.5°C, aliquot of dissolution medium was withdrawn at every 1 min interval and filtered. The absorbance of filtered solution was measured by UV spectrophotometric method at 223 nm and concentration of the drug was determined from standard calibration curve.\[^{14}\]

RESULTS AND DISCUSSIONS

The values of pre and postcompression parameters evaluated were within prescribed limits and indicated a
good free flowing property. Results are shown in Table 2. The post compression parameters such as hardness, friability, thickness, disintegration time, wetting time, drug content are shown in Table 3, and t50%, t90% are shown in Table 4.

Table 1: Composition of Ziprasidone fast dissolving tablets

<table>
<thead>
<tr>
<th>Ingredients (mg)</th>
<th>Formulations code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ZD1</td>
</tr>
<tr>
<td>Ziprasidone</td>
<td>20</td>
</tr>
<tr>
<td>Crosprovidone</td>
<td>3</td>
</tr>
<tr>
<td>Sodium starch glycolate</td>
<td>-</td>
</tr>
<tr>
<td>Crosscarmellose Sodium</td>
<td>-</td>
</tr>
<tr>
<td>Mannitol</td>
<td>70</td>
</tr>
<tr>
<td>Magnesium Stearate</td>
<td>1</td>
</tr>
<tr>
<td>Talc</td>
<td>1</td>
</tr>
<tr>
<td>Total Weight</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 2: Precompressional Parameters of Ziprasidone fast dissolving tablets

Table 3: Post compressional Parameters of Ziprasidone fast dissolving tablets

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Formulations code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ZD1</td>
</tr>
<tr>
<td>Hardness (kg/cm²) ± SD</td>
<td>3.0 ± 0.12</td>
</tr>
<tr>
<td>Friability (%)</td>
<td>0.61</td>
</tr>
<tr>
<td>Thickness (mm) ± SD</td>
<td>3.12 ± 0.10</td>
</tr>
<tr>
<td>Weight variation (mg) ± SD</td>
<td>100 ± 0.11</td>
</tr>
<tr>
<td>In vitro disintegration time (sec) ± SD</td>
<td>25 ± 1.56</td>
</tr>
<tr>
<td>Wetting time (sec) ± SD</td>
<td>87 ± 1.25</td>
</tr>
<tr>
<td>Water absorption ratio (%) ± SD</td>
<td>51 ± 1.22</td>
</tr>
<tr>
<td>Drug Content (%) ± SD</td>
<td>99.20 ± 0.75</td>
</tr>
</tbody>
</table>
Table 4: Release profile of the Ziprasidone fast dissolving tablets

<table>
<thead>
<tr>
<th>Formulations</th>
<th>T_{50%} (min)</th>
<th>T_{90%} (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZD₁</td>
<td>4.00 ± 0.12</td>
<td>7.21 ± 0.29</td>
</tr>
<tr>
<td>ZD₂</td>
<td>3.00 ± 0.21</td>
<td>5.40 ± 0.32</td>
</tr>
<tr>
<td>ZD₃</td>
<td>2.01 ± 0.39</td>
<td>3.63 ± 0.56</td>
</tr>
<tr>
<td>ZD₄</td>
<td>4.58 ± 0.51</td>
<td>8.02 ± 0.18</td>
</tr>
<tr>
<td>ZD₅</td>
<td>4.06 ± 0.54</td>
<td>7.32 ± 0.27</td>
</tr>
<tr>
<td>ZD₆</td>
<td>3.00 ± 0.45</td>
<td>5.04 ± 0.34</td>
</tr>
<tr>
<td>ZD₇</td>
<td>5.02 ± 0.43</td>
<td>9.03 ± 0.54</td>
</tr>
<tr>
<td>ZD₈</td>
<td>3.98 ± 0.29</td>
<td>7.17 ± 1.25</td>
</tr>
<tr>
<td>ZD₉</td>
<td>3.49 ± 0.43</td>
<td>6.28 ± 0.59</td>
</tr>
</tbody>
</table>

Figure 1: Release profile of Ziprasidone FDT’s prepared using crosspovidone

Figure 2: Release profile of Ziprasidone FDT’s using sodium starch glycolate.

Figure 3: Release profile of Ziprasidone FDT’s using crosscaemelose sodium
The weight variation results of prepared tablets were found in the range 98 to 102 mg, which is below ±7.5%. Hardness range were between 3 to 3.5 kg/cm², percentage friability value between 0.41 to 0.74%, in vitro disintegration time of 12 to 50 sec, drug content uniformity was in between 98.91 to 100.80%, water absorption ration were found between 45 to 60% and wetting time between 54 to 98 sec. In all the formulations, hardness test indicates good mechanical strength. Friability of all formulations were less than 1%, which indicated that the tablets had a good mechanical resistance. Drug release from the formulations prepared by using crospovidone (ZD1-ZD3) were faster than formulations prepared by sodium starch glycolate (ZD4-ZD6) and Crosscarmelose sodium (ZD7-ZD9). It may be due to the more wicking and swelling action of crospovidone than other used superdisintegrants.

CONCLUSION
From the results it was concluded that the tablets prepared by using 9% crospovidone shows good result with respect to precomprational parameter and post compressional parameter due to the more wicking action of crospovidone as compared to other used superdisintegrants. All the formulation shows the result with respect to IP limits.

ACKNOWLEDGMENT
We are very thankful to Shri Kishore singh, President RMES’S college of pharmacy, Gulbarga for providing the necessary facilities to carry out this work.

REFERENCES

Source of support: Nil, Conflict of interest: None Declared