MEDICINAL PLANTS ACTIVE AGAINST SNAKE ENVENOMATION
Kanojia Anita*, Chaudhari Kishor Shivaji, Gothecha Vinod Kumar
Department of Agadantastra, National Institute of Ayurveda, Madhav vilas palace, Amer road, Jaipur, Rajasthan, India

Received on: 18/02/12 Revised on: 10/04/12 Accepted on: 02/05/12

*Corresponding author
Dr. Anita Kanojia, M.D. Scholar, Department of Agadantastra, National Institute of Ayurveda, Madhav vilas palace, Amer road, Jaipur, Rajasthan – 302002 India
Email: ntSingh83@gmail.com

ABSTRACT
Snakebite is an important cause of morbidity and mortality and is one of the major health problems in India. About 30000 to 40,000 persons die each year from venomous snake bite. Russell’s viper or daboia (Viper russelli) appears to be the commonest cause of fatal snakebite in Southern India, Pakistan, Bangladesh, Sri Lanka, Burma and Thailand. Intravenous administration of anti-snake venom neutralizes the systemic actions, however, antiserum does not provide enough protection against venom induced hemorrhage, necrosis, nephrotoxicity and often develops hypersensitivity reactions. India has a rich tradition of the usage of medicinal plants. Many Indian medicinal plants are mentioned in Ayurvedic literature to treat snakebite victims and are used by many ayurvedic practitioners as well as in rural areas by traditioners. So much research work has been conducted for anti-snake venom activity of herbal medicine as alternative for Anti Snake Venom. This article presents a review of such herbal drugs which are effectively neutralize the snake venom like vitex nigundo, Emblica officinalis, Hemidesmus indicus etc which were assayed in research laboratories. It is considered as a valuable source of natural products for development of medicines against venomous snake bite.

Keywords: snake venom, plant extract, anti-snake venom, Venomous etc.

INTRODUCTION
The incidence of venomous snake bite is low in most developed countries but in India where the peoples are engaged in manual agriculture with exposed extremities the incidence of snake bite is higher. In India, data are fragmentary because less than 40% of snake-bite patients attend public hospital. Echis carinatus (the carpet or saw-scaled viper) occurs in both India and Pakistan, where it is responsible for a large number of snakebites cases, reaching 95% of envenomations in the State of Jammu. V. russelli also are frequently encountered in India and throughout south-east Asia. In Maharasashtra State, in India, the annual incidence of severe envenomation is about 70 per 100000 inhabitants and the mortality rate is about 2.4 per 100000 per year. In Asia (population, ca. 3500 million) as a whole there may be up to 4 million snake-bites each year, of which almost 50% are envenommed. Approximately half of the victims reach hospital and the annual number of deaths resulting can be estimated at1000001. The upper bounds of recent annual estimates were 94,000 deaths globally and 15,000 deaths in India2. The ASV (Anti-snake venom) treatment is being use in cases of snake bites. But antiserum does not provide enough protection against venom induced hemorrhage, necrosis, nephrotoxicity and often develops hypersensitivity reactions. There is currently no available monovalent Anti-snake venom primarily because there are no objective means identifying the snake species in absence of dead snake. To overcome the drawbacks of conventional antiserum, plant remedies against snakebite are being worked out as an alternative treatment. In Ayurvedic text a number of drugs are mentioned which shows anti-venomous effects. Experimental studies have proved that drugs like vitex nigundo, Emblica officinalis, Hemidesmus indicus, Eclipta prostate, Placea indica etc. are having venom neutralizing properties.

Classification of snakes
Snakes are broadly classified as poisonous and non-poisonous. There are five families of poisonous or venomous snakes, which are Colubridae, Elapidae, Hydrophidae, Viperidae and Ataspididae. In India the four medically important poisonous land snakes are found i.e. Indian Krait (Bengurus caerules), common Cobra (Naja-naja), Saw scaled Viper (Echis carinata) and Russell’s viper (Viper russells).3 In classical texts a detailed description of snakes, their classification, distinguishing factors are given. The snake are broadly classified into 5 varieties i.e. Darvikar, mandali, Rajimaan, Vaikaranj and Nirvisha4.

Anatomy
The typical snake- venom apparatus consist of paired venom glands one on each side of head below and behind the eye connected by ducts to hollow anterior maxillary teeth. In Viperidae, these teeth are large mobile fangs that retract against the roof of the mouth when animal is at rest. In Elapids and sea snakes the fangs are only slightly enlarged and fixed in an erect position. Vipers are characterized by some-what triangular heals, elliptical pupils, enlarged maxillary fangs .Immuno-diagnostic technique have been developed for species identification of snake involved in bites. An ELISA can be used to identify a specific type of snake –venom in victim’s blood, wound aspirate or urine5.

Snake venom characteristics
Snake venom is very complex mixtures of enzymes, low molecule weight polypeptides, glycoprotein and metals ions. The enzyme and polypeptide affect the human body in multisystem fashion. Among these the deleterious components are haemorrhhins that render the vasculature leaky and thus cause both local and systemic bleeding6.

ANTI-SNAKE VENOM ACTIVITIES OF PLANTS
For the treatment of snake bite a number of herbal drugs and their combinations have been mentioned in
Ayurvedic texts. Some of the plants on which experimental studies were carried out are reviewed below.

<table>
<thead>
<tr>
<th>Name of plant</th>
<th>Parts of Plant</th>
<th>Type of Extract</th>
<th>Type of snake venom</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitex negundo and Emblica officinalis</td>
<td>Root</td>
<td>Methanol</td>
<td>Vipera russelli and Naja kaouthia venom</td>
<td>[6]</td>
</tr>
<tr>
<td>Hemidesmus indicus</td>
<td>root</td>
<td>Methanol</td>
<td>Viper venom</td>
<td>[7,8,9]</td>
</tr>
<tr>
<td>Eclipta prostrata</td>
<td>butanol</td>
<td>Malayan pit viper venom</td>
<td>[10]</td>
<td></td>
</tr>
<tr>
<td>Plucheia indica</td>
<td>Root</td>
<td>Methanol</td>
<td>Viper and cobra venom</td>
<td>[11]</td>
</tr>
<tr>
<td>Cordia verbenacea</td>
<td>Seed</td>
<td>Ethanol</td>
<td>Bothrops jararacussu snake venom</td>
<td>[12]</td>
</tr>
<tr>
<td>Strychnos nux vomica</td>
<td>seed</td>
<td>-</td>
<td>D. russelli and N. kaouthia venom</td>
<td>[13]</td>
</tr>
<tr>
<td>Tamarindus indica</td>
<td>Seed</td>
<td>-</td>
<td>V. russellii venom</td>
<td>[14]</td>
</tr>
<tr>
<td>Withania somnifera</td>
<td>-</td>
<td>-</td>
<td>cobra (Naja naja) and viper (Daboia russelli) venom</td>
<td>[15]</td>
</tr>
<tr>
<td>Andrographis paniculata</td>
<td>stem and leaf</td>
<td>Petroleum ether, ethyl acetate, methanol, and water.</td>
<td>Naja naja snake venom</td>
<td>[16]</td>
</tr>
<tr>
<td>Morus alba</td>
<td>Leaf</td>
<td>-</td>
<td>Vipera/Daboia russelli</td>
<td>[17]</td>
</tr>
<tr>
<td>Mimosa pudica</td>
<td>Root</td>
<td>Aqueous extract</td>
<td>Naja naja and Bangoura caeruus venom</td>
<td>[18, 19]</td>
</tr>
<tr>
<td>Vitis vinifera seeds</td>
<td>seed</td>
<td>Methanol</td>
<td>Daboia/viper russelli</td>
<td>[20]</td>
</tr>
<tr>
<td>Mucuna pruriens</td>
<td>seed</td>
<td>Distilled water</td>
<td>Cobra and Krait venom</td>
<td>[21,22]</td>
</tr>
</tbody>
</table>

Vitex negundo and Emblica officinalis
The methanolic root extracts of *Vitex negundo* Linn. and *Emblica officinalis* Gaertn. were tested for antivenom activity. Both plant extracts significantly neutralized the *Vipera russelli* and *Naja kaouthia* venom induced lethal activity both in vitro and in vivo studies. *V. russelli* venom-induced haemorrhage, coagulant, defibrinogenating and inflammatory activity was significantly neutralized by both plant extracts.

Hemidesmus indicus
Hemidesmus indicus root extracts effectively neutralized Viper venom induced lethal, haemorrhagic, coagulant, anticoagulant and inflammatory activity. An organic acid, isolated and purified from the root extract of an Indian medicinal plant *sarsaparilla Hemidesmus indicus* R. Br, possessed viper venom inhibitory activity. HI-RVIF significantly antagonized viper venom-induced lethal, haemorrhagic, coagulant and anticoagulant activity in experimental rodents.

Lupeol acetate isolated from the root extract of Indian *sarsaparilla Hemidesmus indicus* R.Br. could significantly neutralize lethality, haemorrhage, defibrinogenation, edema, PLA2 activity induced by *Daboia russelli* venom.
It also neutralized *Naja kaouthia* venom induced lethality, cardio toxicity, neurotoxicity and respiratory changes in experimental animals.

2-Hydroxy-4-methoxy benzoic acid, isolated and purified from the Indian medicinal plant *H. indicus* possessed anti-snake venom activity. Rabbits immunized with *Vipera russelli* venom in the presence and absence of the compound along with Freund’s complete adjuvant produced a precipitating band in immunogel diffusion and immunoglobulin electrophoresis. The venom neutralizing capacity of this antiserum showed positive adjuvant effects as evident by the higher neutralization capacity (lethal and hemorrhage) when compared with the antiserum raised with venom alone.

Eclipta prostrata
The butanolic extract, at 2.5 mg per mouse, was able to completely neutralize the lethal activity of 2LD₅₀ of MPV venom, but increasing the dose diminished the effect. The PBE, at 1.5–4.5 mg per mouse, was able to neutralize the lethality of the venom at around 50–58%. Both extracts partially inhibited the hemorrhagic activity but displayed very low anti-phospholipase A2 activity and did not inhibit proteolytic activity of MPV venom.

Plucheia indica
The present study reports the neutralization of viper and cobra venom by beta-sitosterol and stigmastanol isolated from the root extract of *P. indica* Less. (Asteraceae). Anti-snake venom activity was studied in experimental animals. The active fraction was found to significantly neutralize viper venom-induced lethal, hemorrhagic, defibrinogenating, edema and PLA(2) activity. Cobra venom-induced lethality, cardiotoxicity, neurotoxicity, respiratory changes and PLA(2) activity were also antagonized by the active component. It potentiated commercial snake venom antiserum action against venom-induced lethality in male albino mice. The active fraction could antagonize venom-induced changes in lipid peroxidation and superoxide dismutase activity. This study suggests that beta-sitosterol and stigmastanol may play an important role, along with antiserum, in neutralizing snake venom-induced actions.

Cordia verbenacea
The methanolic extract from *Cordia verbenacea* significantly inhibited paw edema induced by Bothrops jararacussu snake venom and by its main basic phospholipase A2 homologs, namely bothropsstoxins I and II (BthTXs).

Strychnos nux vomica
The whole seed extract of *S. nux vomica* (in low doses) effectively neutralized *Daboia russelli* venom induced lethal, haemorrhagic, defibrinogenating, PLA2 enzyme activity and *Naja kaouthia* venom induced lethal, cardiotoxic, neurotoxic, PLA2 enzyme activity. The seed extract potentiated polyvalent snake venom antiserum action in experimental animals. Polyvalent snake venom antiserum action was significantly potentiated by the active compound. Spectral studies revealed it to be a small, straight chain compound containing methyl and amide radicals.

Tamarindus indica
Tamarind seed extract inhibited the PLA2 (Phospholipase A2), protease, hyaluronidase, l-amino acid oxidase and 5'-nucleotidase enzyme activities of venom in a dose-
In this investigation, the methanolic extract of grapes (Vitis vinifera L.) was tested for their antivenom activities against the Indian Daboia/ viper russelli venom-induced local effects. The extract abolished the proteolytic and hyluronidase activities and also efficiently neutralized the hemorrhage, edema-inducing and myonecrotic properties of the venom. In addition, the extract also inhibited partially the procoagulant activity of the venom and abolished the degradation of Aα and Bβ chains of human fibrinogen. Thus the extract possesses potent anti-snake venom property, especially against the local effects of viper bites.

Mucuna pruriens

This research demonstrated very clearly that crude extract from Mucuna pruriens seeds contains principles which act as effective protectors, when they are injected intraperitoneally, at 24 hours or 14 days before the administration of a lethal dose of the venom. The antivenom potential of Mucuna pruriens plant extracts were checked against Cobra and Krait venom. Various pharmacological activities like lethality, edema forming activity, hemorrhagic activity, fibrinolytic activity, phospholipase activity (PLA2), procoagulant activity caused by Cobra and Krait venom were carried out. Neutralization of these pharmacological effects was carried out using Mucuna pruriens plant extract. The results showed that the Mucuna pruriens plant extract was capable of neutralizing the lethality induced by the venom. The Cobra and Krait venom showed the presence of PLA2 enzymes by means of producing hemolytic haloes in indirect hemolytic assays. Mucuna pruriens plant extract was capable of inhibiting PLA2 dependent hemolysis of sheep RBC’s in a dose dependent manner. Edema-forming activity was assessed for Cobra and Krait venom and Mucuna pruriens seed extract was found to be effective in neutralization of edema induced by venoms. There was a significant decrease in the edema (footpad thickness) when there was an increase in the antivenom (plant extract) dose. Procoagulant activity induced by Cobra and Krait venom was studied using human citrated plasma and Mucuna pruriens seed extract was found to be effective in the neutralization of procoagulant activity. Mucuna pruriens seed extract was effectively antagonised the fibrinolytic activity. So Mucuna pruriens seed extract was effective in neutralizing the main toxic effects of the Cobra and Krait venoms.

Mimosapudica

Study shows that M. pudica tannins are more effective than tannic acid in neutralizing 2 LD50 of N. kaouthia venom in vitro, but less efficient than antivenom19. Aqueous extract of dried roots of Mimosapudica was tested for inhibitory activity on lethality, phospholipase activity, edema forming activity, fibrinolytic activity and hemorrhagic activity of Naja naja and Bangarus caerulus venoms. The aqueous extract displayed a significant inhibitory effect on the lethality, phospholipase activity, edema forming activity, fibrinolytic activity and hemorrhagic activity. About 0.14 mg and 0.16 mg of M. pudica extracts were able to completely neutralize the lethal activity of 2LD50 of Naja naja and Bangarus caerulus venoms respectively19.

Vitis vinifera seeds

In this investigation, the methanolic extract of grapes (Vitis vinifera L.) was studied against the Indian Daboia/ viper russelli venom-induced local effects. The extract abolished the proteolytic and hyluronidase activities and also efficiently neutralized the hemorrhage, edema-inducing and myonecrotic properties of the venom. In addition, the extract also inhibited partially the procoagulant activity of the venom and abolished the degradation of Aα and Bβ chains of human fibrinogen. Thus the extract possesses potent anti-snake venom property, especially against the local effects of viper bites.

Mucuna pruriens

This research demonstrated very clearly that crude extract from Mucuna pruriens seeds contains principles which act as effective protectors, when they are injected intraperitoneally, at 24 hours or 14 days before the administration of a lethal dose of the venom. The antivenom potential of Mucuna pruriens plant extracts were checked against Cobra and Krait venom. Various pharmacological activities like lethality, edema forming activity, hemorrhagic activity, fibrinolytic activity, phospholipase activity (PLA2), procoagulant activity caused by Cobra and Krait venom were carried out. Neutralization of these pharmacological effects was carried out using Mucuna pruriens plant extract. The results showed that the Mucuna pruriens plant extract was capable of neutralizing the lethality induced by the venom. The Cobra and Krait venom showed the presence of PLA2 enzymes by means of producing hemolytic haloes in indirect hemolytic assays. Mucuna pruriens plant extract was capable of inhibiting PLA2 dependent hemolysis of sheep RBC’s in a dose dependent manner. Edema-forming activity was assessed for Cobra and Krait venom and Mucuna pruriens seed extract was found to be effective in neutralization of edema induced by venoms. There was a significant decrease in the edema (footpad thickness) when there was an increase in the antivenom (plant extract) dose. Procoagulant activity induced by Cobra and Krait venom was studied using human citrated plasma and Mucuna pruriens seed extract was found to be effective in the neutralization of procoagulant activity. Mucuna pruriens seed extract was effectively antagonised the fibrinolytic activity. So Mucuna pruriens seed extract was effective in neutralizing the main toxic effects of the Cobra and Krait venoms.

Andrographis paniculata

Shade dried stem and leaf parts of the Andrographis paniculata were extracted with different solvents on the basis of polarity nature such as petroleum ether (polarity 0), ethyl acetate (4.4), methanol (5.1), and water (9.0). All the four extracts were tested for their antivenom activities through in vivo experiments. Among those, methanol extract of Andrographis paniculata has shown significant inhibition on neurotoxic symptoms caused by the venom (450 μg/ kg b.w) and prolonged the survival time of mice (22 ± 2 g) maximum up to 14.44 ± 0.55 h compared to other extracts. This in vivo screened active methanol extract was further tested for direct inhibitory activity on Naja naja snake venom major enzymes like; acetyl cholinesterase, hyaluronidase, ATPase, protease, and hemolytic activities in vitro. In these experiments, the venom was preincubated with different concentrations of Andrographis paniculata methanol extract at 37 °C for 1h before adding to the reaction mixture in vitro. The results confirmed that, the methanol extract of Andrographis paniculata possesses potent snake venom inhibitors.

Morus alba

In this investigation Morus alba plant leaf extract has been studied against the Indian Vipera/Daboia russelli venom induced local and systemic effects. The extract completely abolished the in vitro proteolytic and hyaluronidase activities of the venom. Edema, hemorrhage and myonecrotic activities were also neutralized efficiently. In addition, the extract partially inhibited the pro-coagulant activity and completely abolished the degradation of Aα chain of human fibrinogen. Thus, the extract processes potent antiscorpion venom property, especially against the local and systemic effects of Daboia russelli venom.
CONCLUSION
The most ancient system of medicine Ayurveda has described a number of drug for the cure of snake bite but no sufficient explanation of their mode of action was available. The recent experimental work not only proved of effectiveness of various herbal drugs on snake bite but also clearly show their mode of action along with active principal. These drugs are found to completely abolish both systemic and local effect of snake venom. No anaphylactic reaction observed in above studies which is very note worthy. Thus these drugs are better alternative for snake envenomation. Still a lots of work has to be done, there are still a number of drugs and combinations of drugs which are mentioned in Ayurvedic text to have anti-venomous properties. These drugs need to be identified and research work should be done on each plant and combinations (Yoga’s) also so that alternative drug for Anti-snake venom will put forward.

REFERENCES