Research Article
www.ijrap.net

ANTICANCER STUDIES ON ETHANOL EXTRACT OF IMPATIENS BALSAMINA

N.Baskar¹, B.Parimala Devi²*, B.Jayakar³
¹Thanthai Roever College of Pharmacy, Perambalur, Tamilnadu, India
²PRIST University, Thanjavur, Tamilnadu, India
³Vinayaka Missions College of Pharmacy, Salem, Tamilnadu, India

Received on: 02/03/12 Revised on: 27/05/12 Accepted on: 10/06/12

*Corresponding author
Dr.B.Parimala Devi, Scientist, Centre for Research and Development, PRIST University, Thanjavur, 613 403, Tamilnadu, India
Email: parimaladevi2006@gmail.com

INTRODUCTION
Over the past few years, cancer has remained a major cause of death and the number of individuals affected with cancer is continuing. Hence, a major portion of the current pharmacological research is devoted to anticancer drug design customized to fit new molecular targets. Due to enormous propensity of plants, which synthesize a variety of structurally diverse bioactive compounds, the plant kingdom is a potential source of chemical constituents with antitumor and cytotoxic activities. The rich and diverse plant sources of India are likely to provide effective anticancer agents. One of the best approaches in the search of anticancer agents from plant sources is the selection of plants based on ethnomedical leads. Impatiens balsamina (Balsaminacea) is distributed in the tropical and sub-tropical part of India. The Annual herb of Impatiens balsamina is used as emetic, cathartic, diuretic, in Hawaii island. It is used as anticancer. Flower is used as cooling, tonic and antiseptic. Many compounds have been reported from the genus Impatiens. Previous phytochemical investigations with I. balsamina revealed the occurrences of Apigenin, flavonoids, napthaquinone, glycosides, kaempferol 3 – rhamnosyl glycoside, kumarins.

MATERIALS AND METHODS
Extraction
The whole plant of Impatiens balsamina were collected from the surrounding areas of trichy in the month of July 2010. The plant was authenticated by Dr. G.V.S. Murthy, Joint Director, Botanical Survey of India, Coimbatore, Tamilnadu, India. A voucher specimen is preserved in our laboratory for future reference (Voucher No.bsi/se/5/23/10-11). The plant material was shade dried, pulverized and extracted (500 g) with 80% ethanol at room temperature for 72 hour. The extract was filtered and concentrated to dryness under reduced pressure and controlled temperature (40°C to 50°C) in a rotary evaporator. The extract was dark, yellowish brown and solid, preserved in vacuum desiccators until further use.

Preparatory Phytochemical Screening
The extract was screened for the presence of various phytochemical constituents. The presence of steroids, alkaloids, tannins, flavonoids, glycosides confirmed using standard tests.

Tumor Cells and Inoculation
Normal Mouse Embryonic Fibroblast (NIH 3T3), Human Cervical Cancer Cells (HeLA), were obtained from National Centre of Cell Sciences (Pune, India). The cultures were maintained in Dulbecco’s modified eagles medium (DMEM) containing 10% inactivated calf serum and were grown in 25cm² tissue culture flaskes (Tarson Products Ltd, Kolkata, India) until confluent and used for cytotoxic assays. DLA cells were supplied by Amala Cancer Research Centre (Trissur, Kerala, India). The cells were maintained in vivo in Swiss albino mice by intraperitoneal transplantation. Tumor cells aspirated from the peritoneal cavity of mice were washed with normal saline and were used for further studies.

Preparation of Suspension and Solutions
For cytotoxicity assays, the extract was dissolved in dimethyl sulfoxide (DMSO) and the volume made up to 10ml to obtain a 1000µg/ml stock solution. Serial two-fold dilutions were made using DMSO to get lower concentration. EEIB was suspended in distilled water using sodium carboxy methyl cellulose (CMC, 0.3%) and administered orally to the animals with the help of an intragastric catheter to study in vivo antitumor activity.

In vitro Cytotoxicity Studies on Human Cancer Cell Lines
Stock cells of Normal Mouse Embryonic Fibroblast (NIH 3T3), Human Cervical Cancer Cells (HeLA), were cultured in RPMI-1640 and DMEM supplemented with 10% fetal bovine serum, penicillin (100IU/ml) and streptomycin (100µg/ml) in a humidified atmosphere of...
5% CO₂ at 37°C until confluent. The cells were dissociated with 0.2% trypsin and 0.02% EDTA. The cytotoxic assay was carried out by adding 0.1 ml of cell suspension containing 10,000 cells to each well of a 96-well microtitre plate (Tarson, Kolkatta, India) and fresh medium containing various concentrations of extract was added at 24 h after seeding. Control cells were incubated without the extract and with DMSO. The microtitre plates were incubated at 37°C in a humidified atmosphere with 5% CO₂ for a period of 72 h. The percentage cytotoxicity and IC₅₀ were determined by the standard MTT assay method.

Animals

Healthy male Swiss albino mice weighing 25±2g were obtained from Venkateshwara Enterprises, Bangalore, India. The mice were grouped and housed in polypropylene cages and maintained under standard conditions (25±2°C) with 12 h dark/light cycle. The animals were fed with standard animal pellet diet and water ad libitum. The experiment protocols received clearance from the Institutional Animal Ethical Committee (IAEC) and CPCSEA, Chennai, India. (Proposal NO P.col/62/2011/IAEC/VMCP).

Acute Toxicity Studies

Acute toxicity study on ethanol extracts of whole plant of *Impatiens balsamina* carried out in Swiss albino mice using the OECD guidelines 423.

Antitumor Studies

Swiss Albino mice were divided in to five group of six each. All the animals in four groups were injected with DLA cells (1x10⁶ cells per mouse) intraperitoneally, and the remaining one group is normal control group. Group 1 served as the normal control. Group 2 served as the tumor control. Group 1 and 2 receives normal diet and Water. Group 3 served as the positive control, was treated with injection fluorouracil at 20 mg/kg body weight, intraperitoneally. Group 4 served as a treatment control group and was administered ethanolic Extract of *Impatiens balsamina* (EIB) at a dose of 200mg/kg through orally. Group 5 served as a treatment control group and was administered ethanolic extract of *Impatiens balsamina* (EIB) at a dose of 400 mg/kg orally. In this study, drug treatment was given after the 24 hrs of inoculation once daily for 14 days. On day 14, after the last dose, all mice from each group were sacrificed; the blood was withdrawn from each mouse by retro orbital plexus method and the following parameters were checked. Tumor cell count, Packed cell volume, Percentage increase of life span, Hemoglobin, WBC, RBC, glucose, cholesterol, aspartate amino transferase, alkaline phosphatase, tri glycerides and body weight.

Table 1: Effect of EIB and on the life span, body weight and cancer cell count of tumor induced mice

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Number of animals</th>
<th>% ILS Life span</th>
<th>Cancer cell count; ml X 10⁶</th>
</tr>
</thead>
<tbody>
<tr>
<td>G₁</td>
<td>6</td>
<td>>30 days</td>
<td>2.22±0.50</td>
</tr>
<tr>
<td>G₂</td>
<td>6</td>
<td>52%</td>
<td>7.85±1.10**</td>
</tr>
<tr>
<td>G₃</td>
<td>6</td>
<td>90%</td>
<td>3.70±0.55**</td>
</tr>
<tr>
<td>G₄</td>
<td>6</td>
<td>72%</td>
<td>6.55±0.80**</td>
</tr>
<tr>
<td>G₅</td>
<td>6</td>
<td>76%</td>
<td>6.25±0.72**</td>
</tr>
</tbody>
</table>

All values are expressed as mean ± SEM for 6 animals in each group.

The Data was evaluated using one way ANOVA followed by Newman Keuls multiple range test.

a – Values are significantly different from control (G₁) at P < 0.001. *b* – Values are significantly different from cancer control (G₂) at P < 0.01

Results and Discussion

The preliminary phytochemical screening revealed that the extract contains glycosides, alkaloids, saponins, flavonoids, phenolic compounds and terpenoids. The IC₅₀ of EIB was found to be 33.7 µg/ml for HELA cells and 49.6 µg/ml for NIH 3T3 cells. In MTT assay, the percentage cytotoxicity progressively increased in a concentration dependent manner. The IC₅₀ of EIB was found to be less than 100 µg/ml against all the human cancer cell lines used. However the IC₅₀ values against the normal mouse embryonic fibroblast (NIH3T3) were found to be very high when compared to that of cancer cell lines. This indicated that EIB possess selective cytotoxicity against the cancerous cell lines, but is safer towards the normal cells. In acute toxicity studies, animals treated with EIB did not show any toxic symptoms or mortality when dosed up to 2000 mg/kg body weight by oral route. This indicated that the extract was found to be safe at the tested dose level. Hence 1/10⁶ (200mg/kg) and 1/5⁶ (400mg/kg) of this dose were selected for the in vivo studies.

In the DLA tumor control group, the average life span of animal was found to be 33.7% and 76% life increase as compared to the control. In the DLA tumor control group, the average life span of animal was found to be 33.7% and 76% life increase as compared to the control.

Table 2: Effect of EIB on Hematological parameters

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Total Wbc Cells /Mlx10⁶</th>
<th>Rbc Count Mill/Cummm</th>
<th>Hb Gm/Dl</th>
<th>PCV %</th>
<th>Platelets Lakhs/Cummm</th>
</tr>
</thead>
<tbody>
<tr>
<td>G₁</td>
<td>9.98 ±1.30</td>
<td>4.24±0.99</td>
<td>12.35±2.30</td>
<td>45.60±2.70</td>
<td>3.20±0.74</td>
</tr>
<tr>
<td>G₂</td>
<td>14.25±2.60**</td>
<td>2.40±0.45**</td>
<td>7.30±0.88</td>
<td>31.50±3.60**</td>
<td>1.65±0.60**</td>
</tr>
<tr>
<td>G₃</td>
<td>11.45±1.90**</td>
<td>3.98±0.88</td>
<td>11.3±1.75</td>
<td>19.30±2.55</td>
<td>2.68±0.55</td>
</tr>
<tr>
<td>G₄</td>
<td>12.40±2.60°</td>
<td>3.25±0.60°</td>
<td>9.95±1.30</td>
<td>23.45±2.90</td>
<td>2.15±0.50</td>
</tr>
<tr>
<td>G₅</td>
<td>12.05±2.14°</td>
<td>3.52±0.70°</td>
<td>10.32±1.55</td>
<td>21.32±2.23°</td>
<td>2.28±0.58</td>
</tr>
</tbody>
</table>
200 mg/kg and 400mg/kg body weight when compared to DLA tumor bearing mice. It was also supported by the significant reduction in packed cell volume and viable Tumor cell count in both the extent of treatment when compared to the DLA tumor control. (Table 1)

Effect of hematological parameter as shown in (Table 2) RBC, Hgb, Platelets were decreased and WBC count was significantly increased in the DLA control group compared to the normal control group. Treatment with EEIB at the dose of 200 mg/kg and 400mg/kg significantly increases the Hgb content, RBC, Platelets and significantly decreased the WBC count to about normal level. All these results suggest the anticancer nature of the EEIB. However, the standard 5-FU at the dose of 20 mg/kg body weight produced better result in all these parameters.

REFERENCES

Source of support: Nil, Conflict of interest: None Declared