ROLE OF SHODHANA ON ANALYTICAL PARAMETERS OF DATURA INNOXIA MILL AND DATURA METEL LINN SEEDS

Patel Yogesh1, Bhat Savitha D.2, Acharya Rabinarayan3*, B. K Ashok4, Shukla V.J5
1M Pharm (Ayu.) scholar, PGT-SFC, Gujarat Ayurved University, Jamnagar, Gujarat, India
2PhD scholar, Department of Dravyaguna, IPGT & RA, Gujarat Ayurved University, Jamnagar, Gujarat, India
3Reader in Department of Dravyaguna, IPGT & RA, Gujarat Ayurved University, Jamnagar, Gujarat, India
4Senior Research Fellow, CCRAS, Pharmacology lab, IPGT&RA, Gujarat Ayurved University, Jamnagar, Gujarat, India
5Head, Pharmaceutical chemistry lab, IPGT&RA, Gujarat Ayurved University, Jamnagar, Gujarat, India

Received: 02-10-2010; Revised: 20-10-2010; Accepted: 26-10-2010

ABSTRACT
Dhattura is a well known and frequently used drug in Ayurveda. Since its seeds are considered to be highly toxic, Ayurveda advocates specific procedures called Shodhana (purification procedures) before rendering it into a safe therapeutic drug. The present analytical study was carried out on seeds of two species of Dhattura namely Datura innoxia Mill. and Datura metel Linn. both before and after Shodhana. Parameters like physico-chemical analysis, pH, extractive values, test for various functional groups, thin layer chromatography and GC-MS studies with special reference to hyoscyamine and scopolamine alkaloids were carried out. The Shodhana process resulted in 70 to 90% reduction in hyoscyamine content, where as scopolamine content reduced almost to zero. The present study reflects the importance of Shodhana of poisonous plant drugs by means of which one can lessen the toxic constituents.

KEYWORDS: Dhattura, Shodhana, Physico chemical study, Analytical study, Hyoscyamine, Scopolamine.

*Corresponding Author
Dr Rabinarayan Acharya,
Reader, Department of Dravyaguna,
I.P.G.T & R.A,
Gujarat Ayurved University,
Jamnagar,
Gujarat. 361008
Email: drrnacharya@gmail.com
INTRODUCTION

In Ayurvedic pharmacopeia, Dhatura is a well known drug which comes under the Upavisha varga (Plants with poisonous effects) as described in various classical texts1,2. In one of the classical lexicon of Dravyaguna Raja Nighantu, five varieties of Dhatura have been reported namely Shweta(White), Krishna(Black), Peeta(Yellow), Rakta(Red) and Neela(Blue), among which Krishna variety is said to be therapeutically more potent than others3.

Different species of Dhatura like Datura innoxia Mill, Datura metel Linn., Datura stramonium Linn., Datura alba Linn., etc. have been identified and many authors have correlated them with the above varieties4,5. However for therapeutic purposes D. metel and D. innoxia are commonly used.

For treating various ailments different parts of the Dhatura like leaves, seeds and roots are used. But the seeds are reported to be highly toxic which is evidenced by various animal studies5,8 also and hence seeds are mainly subjected for purification Ayurvedic classics have emphasized this fact by mentioning various methods of Shodhana (purification) with different medias like Gomutra (Cow’s urine), Godugdha (Cow’s milk), etc 9,10. Since a comparative analytical data on seeds of these two species before and after purification through different medias was not available, this study was undertaken to know the impact of Shodhana on their phyto-constituents.

MATERIALS AND METHODS

Mature seeds of Datura innoxia and Datura metel were collected from their natural source and authenticated by the help of pharmacognosist of IPGT & RA, Gujarat Ayurved University, Jamnagar. The seeds were shade dried and preserved in air tight glass container until further use. Both the samples of Dhatura seeds were subjected to Shodhana as per classical method mentioned in the text Rasamruta10. About 100 grams of Datura innoxia Mill. seeds were soaked in 400ml of freshly collected Gomutra and kept aside for twelve hours. Then the Gomutra was decanted and the seeds were washed in water. It was then subjected to swedana in Godugdha for three hours using dolayantra (a type of instrument used for boiling). The seeds were again washed in hot water and allowed to dry. The outer covering of the seeds (testa) was removed and stored. The same procedure was followed for seeds of Datura metel also.

The Ashodhita (Unpurified/Raw) and Shodhita (Purified) seed samples of both the species were subjected to analytical study. The drugs were coded as; Sample A: D.metel Linn. (Ashodhita), Sample B: D.metel Linn. (Shodhita), Sample C: D.innoxia Mill. (Ashodhita), Sample D: D.innoxia Mill. (Shodhita)

ANALYTICAL STUDY

Physico-chemical analysis namely loss on drying at 110°C, total ash, acid insoluble ash, water soluble extractive value, alcohol soluble extractive value and petroleum ether soluble extractives were carried out for seed samples. The test for various functional groups like alkaloids, flavanoids, glycosides, tannins, carbohydrates, tri-terpenoids etc were also carried out by using standard procedures11. Quantitative estimation of total alkaloid content and total protein content was also carried out12. To analyse the pH, 10% (w/v) aqueous solution of the sample was prepared and filtered. pH of the filtrate was noted in an Ellico's digital pH meter using combined glass electrode13. The methanolic extract of all the samples were subjected to TLC fingerprint analysis using silica Gel (GF 254) as stationary phase and methanol: liquor ammonia (100: 1.5) as solvent front. The plates were developed in iodine chamber and the Rf values were calculated14,15. For GC-MS analysis, about five grams of coarse powder was moistened with eight millilitre of ammonium hydroxide and dried. Then the dried powder was extracted with 10ml of alcohol and partitioned with 20ml of ether. Thus extracted alkaloids were subjected for GC-MS analysis to estimate the percentage of Hyoscyamine and Scopolamine16.

RESULTS AND DISCUSSION

Dhatura occupies an important position in Ayurvedic therapeutics. Though seeds are considered to be more disruptive and have shown to produce deleterious effects, it is rendered therapeutically safe through Shodhana procedures. Hence the change in the phytochemical profile of the drug after Shodhana will be of utmost importance.
About 24.52% decrease in loss on drying, 47.68% and 130% increase in total ash value and acid insoluble ash value respectively was observed in seeds of D. metel after Shodhana. Whereas Shodhita D. innoxia seeds showed 44.20% increase in loss on drying, 10.75% decrease in total ash value and 130% increase in acid insoluble ash. The variation in the percentage of loss on drying by D. innoxia may be due to retaining of some moisture factor from the media like Godugdha used for Shodhana. Total ash content of crude drug is the inorganic residue remaining after incineration. The observed increase in the ash value of D. metel may be due to gaining of inorganic matter from the media. An apparent increase in acid insoluble ash was may be due to some acid insoluble particles like silica gained during the Shodhana. Table 1 shows data related to different physicochemical parameters of the two Dhatura samples before and after Shodhana.

Water soluble and alcohol soluble extractive values were decreased in both the samples after Shodhana, whereas increase in ether soluble extractive was observed in both the samples. Table 2 shows data related to different extractive values of two Dhatura samples before and after Shodhana. Qualitative analysis for various functional groups of all the four samples have shown presence of alkaloids, proteins, carbohydrates, phenols and fixed oils and absence of glycosides, anthrocyanins, saponins, resins, and terpenoids. Phyto-constituents like sugars, phenols, flavonoids, glycosides, tannins, alkaloids etc. are expected to be extracted in the polar solvents. The observed non-appearance of some of the constituents may be due to transfer of these components to the media especially Gomutra, which is polar in nature. However Shodhana procedure did not alter the qualitative tests for various functional groups and is revealed by presence of alkaloids, proteins, carbohydrates, phenols and fixed oils.

TLC finger printing of raw seed samples showed five spots each with variable Rf values. However after Shodhana, only two spots were observed in Shodhita D. metel sample and three spots in D. innoxia sample. Many previous studies have shown that Dhatura seeds contain 0.50 per cent of scopolamine, hyoscyamine and atropine alkaloids17. Also, Kundu et al., (1991) have reported new alkaloid having related structure of hyoscine and hyoscyamine (C20H17O2N)18. The reduction in number of spots in TLC study indicates that Shodhana process may have removed some of the phyto constituents especially alkaloids. This is also evidenced by total alkaloid estimation in which almost 70% reduction in total alkaloid content of both D. metel and D. innoxia is observed after Shodhana. Rf values of different samples are depicted in Table 3. Total alkaloid contents of the seed samples are shown in Graph 1.

After Shodhana, D. metel sample showed 70% increase in total protein content where as D. innoxia sample showed an increase of about 42%. The data related to total protein content of seed samples has been shown in Graph 2. pH of Datura metel was increased by 11% after Shodhana whereas it decreased by 11% in Datura innoxia sample as depicted in Graph 3. The difference in pH value may be due to the fact that the seeds are of two different species.

Further GC-MS analysis has shown scopolamine percentage of D. metel and D. innoxia to be nil and about 70 to 90% reduction in hyoscamine content after Shodhana. Graph 4 shows percentage of scopolamine and hyoscamine in both the seed samples as estimated by GC-MS. Complete removal of scopolamine and partial removal of hyoscamine reflects the importance of Shodhana of poisonous plant drugs by means of which one can lessen the toxic effects.

CONCLUSION
The present study shows that Shodhana procedure lead to reduction in toxic constituents of two species of Dhatura and can be adopted prior to its use in therapeutics. Further analytical study of media used for Shodhana is required to ascertain analytical profile and pharmaco-clinical study is required to find out whether purified material is safe as well as efficacious.

REFERENCES

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sample A</th>
<th>Sample B</th>
<th>Sample C</th>
<th>Sample D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss on drying at 105°C (%w/w)</td>
<td>11.66</td>
<td>8.8</td>
<td>10.18</td>
<td>14.68</td>
</tr>
<tr>
<td>Ash value at 500°C (% w/w)</td>
<td>3.7</td>
<td>5.46</td>
<td>4.93</td>
<td>4.40</td>
</tr>
<tr>
<td>Acid insoluble ash at 500°C (% w/w)</td>
<td>0.065</td>
<td>0.15</td>
<td>0.065</td>
<td>0.15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sample A</th>
<th>Sample B</th>
<th>Sample C</th>
<th>Sample D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water soluble extractive (% w/w)</td>
<td>8.85</td>
<td>5.45</td>
<td>9.3</td>
<td>7.98</td>
</tr>
<tr>
<td>Alcohol soluble extractive (% w/w)</td>
<td>20.53</td>
<td>5.4</td>
<td>9.12</td>
<td>7.65</td>
</tr>
<tr>
<td>Ether soluble extractive (% w/w)</td>
<td>9.36</td>
<td>18.99</td>
<td>33.06</td>
<td>34.90</td>
</tr>
</tbody>
</table>
Table 3: Rf values of TLC (Methanolic extract of sample – visualization under iodine chamber)

<table>
<thead>
<tr>
<th>Samples</th>
<th>No. of spots</th>
<th>Rf values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample A</td>
<td>5</td>
<td>0.03, 0.19, 0.33, 0.62, 0.94.</td>
</tr>
<tr>
<td>Sample B</td>
<td>2</td>
<td>0.28, 0.92.</td>
</tr>
<tr>
<td>Sample C</td>
<td>5</td>
<td>0.05, 0.22, 0.37, 0.83, 0.92.</td>
</tr>
<tr>
<td>Sample D</td>
<td>3</td>
<td>0.55, 0.74, 0.83.</td>
</tr>
</tbody>
</table>

Graph 1: Total alkaloid contents

Graph 2: Total protein content
Graph 3: pH values

Graph 4: GC-MS profile

Source of support: Nil, Conflict of interest: None Declared